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Abstract

Building and transportation sectors account for 41% and 27% of total energy con-

sumption in the US, respectively. Designing smart controllers for Heating, Ventilation

and Air-Conditioning (HVAC) systems and Internal Combustion Engines (ICEs) can

play a key role in reducing energy consumption. Exergy or availability is based on

the First and Second Laws of Thermodynamics and is a more precise metric to eval-

uate energy systems including HVAC and ICE systems. This dissertation centers on

development of exergy models and design of model-based controllers based on exergy

and energy metrics for grid-connected energy systems including HVAC and ICEs.

In this PhD dissertation, effectiveness of smart controllers such as Model Predictive

Controller (MPC) for HVAC system in reducing energy consumption in buildings

has been shown. Given the unknown and varying behavior of buildings parameters,

this dissertation proposes a modeling framework for online estimation of states and

unknown parameters. This method leads to a Parameter Adaptive Building (PAB)

model which is used for MPC.

Exergy destruction/loss in a system or process indicates the loss of work potential.

In this dissertation, exergy destruction is formulated as the cost function for MPC

problem. Compared to RBC, exergy-based MPC achieve 22% reduction in exergy
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destruction and 36% reduction in electrical energy consumption by HVAC system. In

addition, the results show that exergy-based MPC outperforms energy-based MPC

by 12% less energy consumption.

Furthermore, the similar exergy-based approach for building is developed to control

ICE operation. A detailed ICE exergy model is developed for a single cylinder engine.

Then, an optimal control method based on the exergy model of the ICE is introduced

for transient and steady state operations of the ICE. The proposed exergy-based

controller can be applied for two applications including (i) automotive (ii) Combined

Heat and Power (CHP) systems to produce electric power and thermal energy for

heating purposes in buildings. The results show that using the exergy-based optimal

control strategy leads to an average of 6.7% fuel saving and 8.3% exergy saving

compared to commonly used FLT based combustion control.

After developing thermal and exergy models for building and ICE testbeds, a frame-

work is proposed for bilevel optimization in a system of commercial buildings inte-

grated to smart distribution grid. The proposed framework optimizes the operation

of both entities involved in the building-to-grid (B2G) integration. The framework

achieves two objectives: (i) increases load penetration by maximizing the distribu-

tion system load factor and (ii) reduces energy cost for the buildings. The results

show that this framework reduces commercial buildingsâĂŹ electricity cost by 25%

compared to the unoptimized case, while improving the system load factor up to 17%.
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Chapter 1

Introduction

The US building sector contributed 72% of total electricity consumption in 2006,

which is projected to increase to 75% by 2025 [10]. The electricity consumption in

the building sector is almost evenly distributed to commercial and residential build-

ings [10].

According to Energy Information Administration of DOE (EIA/DOE) [11], buildings

account for 39% of the US total CO2, a primary Greenhouse Gas (GHG), emissions.

Of that total, 21% goes to the residential sector and 18% to the commercial sector.

In the US, buildings sector accounted for 41% of primary energy consumption and of

that total, HVAC contributed 20% of energy consumption in 2010 [12]. According to

the U.S. Environmental Protection Agency (EPA), 30% of the energy in commercial
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buildings is wasted. Given the energy waste/consumption trend in the buildings

sector, energy efficiency is one of the major ways to reduce GHG emissions, and

energy consumption. Building Technology Office (BTO) has set a long-term goal for

energy efficiency by 2025. BTO aims for reduction of residential energy consumption

by 40% and commercial buildings by at least 35% compared to typical commercial

buildings in 2010 [13].

The considerable amount of energy consumption and GHG emissions in building

sector make HVAC systems a very attractive candidate for energy efficiency programs

and policies. It has been proven that one of the most effective ways to reduce energy

consumption is to design advanced controllers such as model-based controllers for

buildings [1]. Figure 1.1 shows a cluster of smart buildings connected to a smart grid.

Robustness, tunability, and flexibility of Model Predictive Control (MPC) make them

a promising model-based control strategy for buildings. MPC has shown results for

achieving higher energy efficiency in buildings. However, to design MPC, having an

accurate model to predict system dynamics of the plant (i.e., building) is crucial. Such

model should be able to provide an accurate temperature prediction of the building by

capturing the interaction between the thermal behavior of the building’s components,

temperature schedules, and constraints [1]. Given the uncertain and time-varying

physical, occupancy characteristics and also unmodeled dynamics, the parameters

of the mathematical model need to constantly adapt to this change over time. In

Chapter 2, a Parameter Adaptive Building (PAB) technique will be presented. In the
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proposed method, PAB model learns and updates building time-varying parameters.

Then, a comparative method is introduced to choose building controller among MPC,

Robust MPC (RMPC) and conventional Rule Based Controller (RBC) based on model

uncertainty. Chapter 2 builds the block of mathematical building model and MPC

formulation required for integration of buildings-to-grid (B2G) framework.

To evaluate efficiency of HVAC systems, First Law of Thermodynamics (FLT) is

always used as a metric in the context of building HVAC control. The FLT deals with

energy conservation whereas Second Law of Thermodynamics (SLT) concerns entropy

production and irreversibilities in processes which cause deficiency and energy waste.

SLT states that energy has quality in addition to its quantity. Exergy or availability

is the portion of energy that can do work in a specific environment. HVAC processes

occur close to the environment temperature (25oC) and therefore are considered as

low quality energy demands. However, these demands are mostly granted with high

quality energy (high exergy) sources such as electricity from grid which themselves

are mainly obtained from high exergy sources such as fossil fuels.

HVAC systems can be operated in low exergy fashion by applying exergy-aware con-

trol algorithm which reduces irreversibilities. In other words, systems can be operated

with less irreversibility and as a result, system operation will be more energy efficient

and more sustainable.

Given the unprecedented focus on energy efficiency due to aforementioned facts, and
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Figure 1.1: Concept summary of grid-connected energy systems and model-
based predictive control.

at the same time, increasing penetration of Renewable Energy Sources (RES), con-

troller design algorithms for building HVAC systems with exergy considerations is

crucial. A comparison between exergy objective function with the price and the car-

bon emission objective functions has been made in [14] that shows economical benefits
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of carefully managing exergy.

In Chapter 3, exergy is introduced as an appropriate metric to assess performance of

an HVAC system. An exergy model of a testbed building and an MPC strategy based

on the minimization of exergy destruction are developed. The Exergy-based MPC

(XMPC) reduces irreversible entropy generation of an HVAC system by minimizing

exergy destruction. It also addresses not only energy saving but also environmental

concerns by saving exergy. Chapter 3 provides exergy model for buildings as one of

the major components of the demand side connected to power grid (Figure 1.1).

Internal Combustion Engines (ICEs) are energy system devices that are widely used

in Combined Heat and Power (CHP) systems, transportation and service/utility in-

dustries. ICEs account for over 22% of US total energy consumption [15, 16] and

produce the largest portion of CO2 GHG emissions in urban areas [16, 17]. In 2011,

a new standard for vehicles fuel economy model years 2017 to 2025 was announced

by EPA [18]. According to this standard, fuel economy is required a 5% and 3.5%

annual rise for passenger cars and light trucks, respectively. In 2010, transportation

sector accounted for 23% global GHG emissions [19] and it is anticipated that the

Production of GHG will rise by 29% from 2015 to 2030 [20]. Considering the fact

that energy and GHG emission are not limited to building’s sector, we designed an

exergy-based control method for ICE which is also used in Combined Heat and Power

(CHP) systems.
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Recently, due to their high thermal efficiency, CHP systems as one of the emerging

Distributed Generation (DG) are of interest for commercial and residential buildings.

A grid-connected DG can operate in parallel to the grid or can operate in island as

an Uninterruptible Power Supply (UPS) services [21]. Unlike renewables (e.g., wind

and solar energy) which are intermittent in nature and considered as negative load,

CHPs are considered as dispatchable supplies as shown in Figure 1.1. CHPs enable

smart buildings’ to reduce energy cost by supplying required power to buildings at

peak price hours and benefit the distribution power grid.

CHP systems have three main parts: (i) ICE, (ii) heat exchanger, and (iii) Thermal

Energy Storage System (TES). In ICEs, exergy can be destroyed through irreversible

processes including combustion, heat transfer, friction and mixing. Exergy destruc-

tion in ICEs leads to the loss of work potential during operation. For instance, exergy

destruction of the combustion process reduces the fuel potential to do mechanical

work. Thus, identification of sources of exergy destruction in an ICE is crucial to

enhance the engine performance and efficiency. SLT characterizes and quantifies the

sources of irreversibility and exergy loss in ICEs. In Chapter 4, an Exergy-based

control of ICE (XCICE) algorithm is introduced. XCICE optimizes the steady-state

and transient operation of ICEs applicable for CHP systems and vehicles.

XCICE minimizes exergy losses and therefore maximizes SLT efficiency. Depending

on the application, the desired output of an ICE can be power or Combined Power and
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Exhaust Exergy (CPEX). Exhaust exergy can be used in both stationary and mobile

applications of energy systems. For example, exhaust exergy is used in turbochargers

to boost the intake pressure that leads to ICE fuel economy improvement and also

exhaust exergy is recovered in CHP systems. CHP is an efficient method to produce

thermal energy and shaft power simultaneously. The thermal energy of CHP is used

or stored for domestic and commercial heating applications and generators convert

shaft power to electric power. Chapter 4 builds the block of micro-CHP as a DG in

power grid-connected energy systems shown in Figure 1.1.

Smart buildings can play a key-role in energy efficiency, comfort and ancillary service

for distribution power grids. Smart buildings are a new generation of energy systems

that provide comfort climate and services to the occupants by consuming optimum

energy at optimum time of the day. As shown in Figure 1.1, Building Energy Man-

agement System (BEMS) in smart buildings communicates with occupants as the

main clients, as well as weather stations, Market Operators (MO), and Distribution

System Operators (DSO) to adjust and optimize their operations in both cost and

energy effective ways. The smart building operation can provide services needed by

distribution power grid system. These services include ancillary service e.g., voltage

and frequency regulations, and Demand Response (DR). Unlike conventional build-

ings, smart buildings can provide Energy Storage Systems (ESS) and DG. Building’s

ESS offers flexibility to participate in DR and reduces the cost of energy by load

shifting.
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In Chapter 5 a B2G framework is proposed based on information exchange between

the two levels, i.e, the BEMS and DSO control center. For the demand response ap-

plications discussed in this chapter, a bidirectional communication infrastructure is

required between the BEMSs and the DSO. The proposed B2G optimization frame-

work minimizes building’s energy cost and provides DR service for grid and in par-

ticular maximizes distribution system load factor. The inputs to the algorithm are

maximum demand limit, energy price, weather forecast, and the occupancy schedule.

The contribution of Chapter 5 is on the development of generic hierarchical opti-

mization framework for B2G system. Such development is essential for coordinated

control of multiple BEMSs connected to distribution grid for large scale demand re-

sponse and other grid level services. Chapter 5 constructs the framework for smart

B2G connection shown in Figure 1.1.

Figure 1.2 summarizes the organization of chapters in this dissertation.
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Figure 1.2: Organization of this dissertation.
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Chapter 2

Handling Model Uncertainty in

Model Predictive Control for

Energy Efficient Buildings1

Model uncertainty is a significant challenge to more widespread use of model predic-

tive controllers (MPC) for optimizing building energy consumption. This dissertation

presents two methodologies to handle model uncertainty for building MPC. First, we

propose a modeling framework for online estimation of states and unknown param-

eters leading to a parameter-adaptive building (PAB) model. Second, we propose a

robust model predictive control (RMPC) formulation to make a building controller
1This chapter has been published in Journal of Energy and Buildings [1]
(doi:10.1016/j.enbuild.2014.03.057) with permissions from Elsevier as shown in Appendix E
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robust to model uncertainties. The results from these two approaches are compared

with those from a nominal MPC and a common building rule based control (RBC).

The results are then used to develop a methodology for selecting a controller type

(i.e. RMPC, MPC, or RBC) as a function of building model uncertainty. RMPC is

found to be the superior controller for the cases with an intermediate level of model

uncertainty (30âĂŞ67%), while the nominal MPC is preferred for the cases with a low

level of model uncertainty (0âĂŞ30%). Further, a common RBC outperforms MPC

or RMPC if the model uncertainty goes beyond a certain threshold (e.g. 67%).

2.1 Introduction

Reducing the energy consumption of buildings by designing smart controllers for

operating the HVAC system in a more efficient way is critically important to address

energy and environmental concerns [12]. Advanced control algorithms are considered

major enablers to achieve higher energy efficiency in commercial buildings. Entire

sections of the ASHRAE 90.1 standard [22] are dedicated to the specification of

control requirements. Although the optimal control of an HVAC system is a complex

multi-variable problem, it is standard practice to rely on simple control strategies

that include on-off controllers with hysteresis, and PID controllers.

For optimal control design a thermal model of the building is needed. To achieve
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building-level energy-optimality, building model should be able to capture the inter-

action between physically connected spaces in the building, heat storage in walls, and

provide an accurate prediction of temperature in the building. Control algorithm on

the other hand, should be able to minimize energy consumption and optimize thermal

comfort by exploiting occupancy schedules, weather forecast, and system dynamics

(i.e. a model to predict temperature evolution of indoor air), and satisfy state (i.e.

room air temperature and wall temperatures) and inputs (i.e. discharge air tempera-

ture and air mass flow rate) constraints and operate the HVAC system of the building

in an optimal fashion within the range of operation of the components.

Model Predictive Control (MPC) is a promising control strategy that is capable of

addressing all the aforementioned criteria and has shown results for achieving higher

energy efficiency in buildings [23, 24, 25, 26, 27]. MPC can provide a potential build-

ing energy saving of 16%-41% compared to the commonly used rule-based building

HVAC controllers [23, 28, 29]. Other advantages of MPC for building HVAC systems

include robustness, tunability, and flexibility [23]. Application of MPC for building

energy control has been reported in the literature [23, 27, 28, 30, 31, 32, 33, 34]. There

are different variations of nominal MPC such as distributed [33, 35], robust [30, 36]

and stochastic [24, 27] MPC strategies to systematically address various challenges

in building energy control. In [37] the authors propose a computationally tractable

approximation of the nonlinear optimal control problem by which they optimize the
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predicted mean vote (PMV) index, as opposed to the static temperature range. A ro-

bust control strategy based on static pressure and supply air temperature reset control

is presented in [38] for variable air volume (VAV) system. [39] proposes a controller

based on a three mode robust control strategy where each mode addresses different

control objectives and conditions; this proposed controller is robust in different load

conditions. Authors of [40] showed that in presence of model uncertainty an H∞-

robust controller achieves not only a robust performance on set-point tracking of the

air-handling unit but also less energy consumption compared to the pole-placement

controller. Authors in [41] observed that indoor zone volume acts as system’s bifurca-

tion parameter. A multi-variable regulation strategy based on feedback linearization

is used to prevent secondary Hopf bifurcation. The designed control improves the

limit cycle behavior and decreases indoor temperature variation.

However, these control techniques rely heavily on a perfect (or almost perfect) mathe-

matical model of the building and a perfect estimation of the unmodeled dynamics of

the system [23] to achieve considerable energy saving. In [28] the authors argue that,

based on industrial experience, modeling is the most time-demanding and costly part

of the automation process. Recently, numerous mathematical models of building ther-

mal dynamics have been proposed in the literature. Resistor-capacitor (RC) models

with disturbances to capture unmodeled dynamics have been proposed in [23, 29, 42].

A bilinear version of an RC model is presented in [27] that takes into account weather

predictions to increase building energy efficiency. In [43], the authors found that time
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varying properties such as occupancy can significantly change the dynamic thermal

model and influence how building models are identified. While modeling a multi-zone

building, the authors of [43] observed that the experimental data often did not have

sufficient quality for system identification and hence, proposed a closed-loop archi-

tecture for active system identification using prediction-error identification method

(PEM). Although a great deal of progress has been made in modeling the thermal

behavior of building envelope and HVAC system [23, 25, 26, 29, 42, 44], the random

nature of some components of these systems makes it very hard to predict, with high

fidelity, the temperature evolution of the building using mathematical models.

Buildings are dynamical systems with uncertain and time-varying physical and oc-

cupancy characteristics. The heat transfer characteristics of a building are highly

dependent on the ambient conditions. For instance, heat transfer properties such

as convective heat transfer coefficient h, of peripheral walls is dependent on outside

temperature, wind speed and direction. Also, unmodeled dynamics of a building [23]

is function of 1) external factors: ambient weather conditions such as radiative heat

flux into the walls and windows, and cloudiness of the sky, and 2) internal factors:

such as occupancy level, internal heat generation from lighting, and computers. These

quantities are highly time-varying and therefore the dynamics of the building and,

consequently, parameters of the mathematical model need to constantly adapt to this

change over time.
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One approach to increase the accuracy of the linear building models is to use an

adaptive parameter estimation technique such that the building parameters are up-

dated as the environment changes which leads to an adaptive modeling framework.

Although this technique has been used for joint state-parameter estimation in other

applications [45, 46, 47], to the best of the authors’ knowledge, this dissertation is the

first study on developing adaptive modeling framework for simultaneous estimation

of building parameters, states and unmodeled dynamics.

Four approaches can be taken to model dynamic behavior of buildings and overcome

model uncertainty for building controls:

1. Develop detailed nonlinear physical models for building [48, 49], and infer time-

varying factors such as weather conditions, occupancy level, etc [50].

2. Incorporate sensors to measure time-varying factors [51, 52].

3. Develop an adaptive computationally efficient model which learns and updates

building time-varying parameters.

4. Design building controllers which are robust to model uncertainties.

The first approach is typically computationally expensive. Consequently, its applica-

tion for real-time building controls is limited. The second approach provides accurate

information about time-variation of influential factors on building performance but
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this approach is not cost-efficient and can be limited by the possibility of adding new

sensors to a building. The third and fourth approaches are promising and they are

the focus of this Chapter. In particular, we develop a parameter adaptive building

(PAB) model and design a robust MPC for buildings. In this Chapter we build upon

our previous work reported in [23, 29, 36, 42, 53].

The overall contribution of this Dissertation is putting together modeling, control

and co-design in a coherent framework to develop a methodology for selecting a con-

troller type (i.e. RMPC, MPC, or RBC) as a function of building model uncertainty.

Particular contributions are:

1. A novel adaptive modeling framework for building predictive control is pre-

sented. The modeling framework also illustrates the application of unscented

Kalman filter (UKF) technique for building online parameter identification and

state estimation

2. Impact of model uncertainty on HVAC predictive controllers is characterized.

3. A new RMPC structure that uses disturbance feedback parameterization of the

input is introduced. We show that this parameterization reduces the number

of decision variables of the optimization problem and hence results in a faster

alternative to the existing parameterizations in the literature, while maintaining

the performance level of the RMPC.
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4. A guideline for choosing an MPC versus an RMPC, versus a rule-based control

based on the level of model uncertainty is proposed.

The rest of this Chapter is organized as follows. Section 2 explains the experimental

setup used to collect data for this Thesis. We present the proposed parameter adaptive

building (PAB) model and the developed parameter/state estimation technique in

Section 3. Controller design and performance results for MPC and RMPC, as well as

the indices based on which we assess the performances of the introduced controllers

are presented in Section 4. Conclusions are drawn in Section 5.

2.2 Test-Bed and Historical Data

The model studied in this chapter is a model for an office room in Lakeshore building

at Michigan Technological University. This room is surrounded by two rooms and

a corridor in the building and connected to the outdoor area with a thick concrete

wall and two south-oriented double-layered windows. Each room is equipped with

temperature and humidity sensors (Uni-curve Type II) with the temperature accuracy

of ±0.2◦C as part of the Building Management System (BMS). We have used a

different sensing device, (temperature data logger with accuracy of±0.8◦C) to account

for spatial temperature variation in the room and sensing accuracies of individual

sensors. Location of the zone sensors are shown in Fig. 2.1. Temperature readings
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from these two sensors are shown in Fig. 2.2. We follow the methodology proposed

in [53] to find the temperature measurement accuracy, which is obtained to be±0.8◦C,

and is used in the state estimation algorithm which is described in section 2.3.3.

Outdoor temperature is also measured by the BMS system.

Figure 2.1: Location of the temperature sensors in the test-bed. The sensor
1-a is the room temperature sensor and the sensor 1-b is a temperature data
logger installed to calculate measurement errors.
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Figure 2.2: Data logger and BMS sensor temperature readings in Fig. 2.1.

The HVAC system in the building uses Ground-Source Heat-Pumps (GSHP) to obtain

required energy for heating purposes. Each unit in this system provides heating for

an individual zone. Therefore, a unit operates when heating is required for its zone:

the setpoint can be defined independently based on the functionality of each zone.

The HVAC system uses an on-off controller to provide a desired temperature for each

zone. Zone temperatures are measured with a sampling period of 60 seconds.
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2.3 Parameter Adaptive Building (PAB) Model

Building models proposed in the literature depend on many parameters. The rea-

son is that buildings are composed of many sub-systems and a variety of thermal

mechanisms takes place in the building such as heat conduction through walls, forced

convection due to air conditioning systems, and thermal radiation from outside. A

mathematical model that is descriptive enough to accurately explain these phenom-

ena will end up with many time-varying parameters. Finding the best parameters at

each time step is shown to be cumbersome [43]. In this section we propose and de-

velop a novel parameter adaptive building (PAB) model that facilitates this parameter

tuning process in an online and automatic fashion. The architecture of the proposed

PAB model is shown in Fig. 2.3. Measurement data from various sensors such as

temperature and airflow are stored in a data repository. The PAB model has a pa-

rameter update module which takes care of automatic parameter tuning on the fly,

and is explained in detail later in this section. The PAB model works as follows:

Historical data is used to perform off-line, one-step model calibration. The obtained

parameters from model calibration is used in the parameter update module (exploit-

ing Kalman filtering algorithm) as an initial set of parameters. Kalman filter updates

the parameters of the building model, as the new measurements arrive. The control

module then uses the new updated set of parameters for the next time step.
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Here we first review fundamental heat transfer mechanisms in buildings, leading to a

mathematical model of building climate, on top of which we develop the PAB model

in the rest of this section.

Figure 2.3: Architecture of the building control based on the proposed
PAB model with its components.

2.3.1 Mathematical Modeling

Fig. 2.4 depicts the schematic of a typical room studied in this chapter. We use

lumped model analysis [54] to reduce the complexity of the model, and obtain a low
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order model, suitable for control purposes. As a simplifying assumption, temperature

is considered uniform inside the room. We use RC model from [42] in which the

building is considered as a network of nodes. We account for time varying parameters

by updating the parameters on the fly. More details on online parameter estimation

is presented in Section 2.3.2.

Figure 2.4: Schematic of a typical room with a window. Temperature
sensors are denoted by “S” in this figure.
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2.3.1.1 Heat Transfer

There are two types of nodes in the building network: walls and rooms. Consider in

total n nodes, m of which represent rooms and the remaining n−m nodes represent

walls. We denote the temperature of room i with Tri
. The wall node and temperature

of the wall between room i and j are denoted by (i, j) and Twi,j
, respectively, thermal

dynamics of which is governed by the following equation:

Cw
i,j

dTwi,j

dt
=

∑
k∈Nwi,j

Trk
− Twi,j

Ri,jk

+ ri,jαi,jAwi,j
Qradi,j

(2.1)

where Cw
i,j, αi,j and Awi,j

are heat capacity, radiative heat absorption coefficient and

area of wall between room i and j, respectively. Ri,jk is the total thermal resistance

between the centerline of wall (i, j) and the side of the wall where node k is located.

Qradi,j
is the radiative heat flux density on wall (i, j). Nwi,j

is the set of all of neigh-

boring nodes to node wi,j. ri,j is wall identifier which is equal to 0 for internal walls,

and equal to 1 for peripheral walls (i.e. either i or j is an outside node). In equa-

tion (2.1) the left term denotes the rate of change of stored heat in the wall between

room i and room j. The first term of the right hand side of this equation represents

the flow of heat between room k and wall (i, j) due to temperature difference and

the second term shows the heat flow to the wall, due to solar radiation. Temperature
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dynamics of the ith room is modeled by the following equation:

Cr
i

dTri

dt
=

∑
k∈Nri

Tk − Tri

Ri,ki

+ ṁri
ca(Tsi

− Tri
) + wiτwi

Awini
Qradi

+ Q̇inti
(2.2)

where Tri
, Cr

i and ṁri
are the temperature, heat capacity and air mass flow into room

i, respectively. ca is the specific heat capacity of air, and Tsi
is the temperature of

the supply air to room i. πi is window identifier which is equal to 0 if none of the

walls surrounding room i have a window, and is equal to 1 if at least one of them

has a window. τwi
is the transmissivity of glass of window i, Awini

is the total area of

windows on walls surrounding room i, Qradi
is the radiative heat flux density per unit

area radiated to room i, and Q̇inti
is the internal heat generation in room i. Nri

is

the set of all of the neighboring room nodes to room i. In equation (2.2) the left term

denotes the rate of change of stored heat in the air in room i. The first term of the

right hand side of this equation represents the flow of heat between node k and room

i due to temperature difference, the second term shows the heat flow delivered by the

heating system, the third term represents the total radiative heat passing through

the windows and the fourth term is the internal heat generation inside room i. More

details of building thermal modeling and estimation of the unmodeled dynamics is

available in [23, 29, 42]. Note that we approximate the values of Qradi
(t) and Q̇int(t)
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based on the following equations:

Qradi
(t) = τTout(t) + ζ (2.3)

Q̇int(t) = µΨ(t) + ν (2.4)

where Tout and Ψ are the outside air temperature and CO2 concentration in the room,

respectively [55]. Air ventilation is considered constant as a simplifying assumption.

A more sophisticated model for gas transport process in buildings can be found in

[56]. Parameters τ , ζ, µ and ν are obtained by the parameter estimation algorithm

detailed in Section 2.3.3.

We model the radiative heat transfer between building and ambient environment as

proposed in [57]. The amount of heat transferred from the building to the environment

is given by the Stefan-Boltzmann law:

Qbldg = εσT 4
bldg (2.5)

where Tbldg is the average temperature of the building. We also consider solar radia-

tion heat transfer, Qsolar absorbed by the walls, and the room through the windows.

The data used in this chapter is based on the past 30 years monthly average of solar
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radiation for flat-plate collectors facing south (resembling the south facing flat verti-

cal walls of the building), and is obtained from NREL (National Renewable Energy

Laboratory) [58] database for Houghton, MI in January. Furthermore, we take into

account the radiation cooling at night (i.e. sky thermal radiation to the building)

based on the proposed relation in [57]:

Qsky = (1 +KC2)8.78× 10−13T 5.852
out RH0.07195 (2.6)

where K is the coefficient related to the cloud height and C is a function of cloud

coverage. We use K = 0.34 and C = 0.8 for simulations, based on the results in [57].

Tout is the outside air temperature, and RH is the air relative humidity percentage.

The total radiation exchange between building and ambient environment is then given

by:

Qrad = Qsky +Qsolar −Qbldg (2.7)

Note that Qsky and Qsolar are heat flow into the building, and Qbldg, is the heat flow

from the building to the environment.
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2.3.1.2 System Dynamics

Heat transfer equations for walls and rooms yield the following system dynamics:

ẋt = f(xt, ut, dt, t)

yt = Cxt (2.8)

where xt ∈ Rn is the state vector representing the temperature of the nodes in the

thermal network, ut ∈ Rlm is the input vector representing the air mass flow rate and

discharge air temperature of conditioned air into each thermal zone, and yt ∈ Rm

is the output vector of the system which represents the temperature of the thermal

zones. l is the number of inputs to each thermal zone (e.g., two for air mass flow

and supply air temperature). C is a matrix of proper dimension and the disturbance

vector is given by dt = g(Qradi
(t), Q̇int(t), Tout(t)).

2.3.1.3 Disturbance

Following the intuitive linear relation between outside temperature Tout, internal heat

generation Q̇int, and solar radiation Qrad, with the building internal temperature rise
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we approximate g with an affine function of these quantities, leading to:

dt = aQradi
(t) + bQ̇int(t) + cTout(t) + e (2.9)

where a, b, c, e are constants to be estimated. By substituting (2.3) and (2.4) into (2.9)

and rearranging the terms, we get:

dt = (aτ + c)Tout(t) + bµΨ(t) + aζ + bν + e

= āTout(t) + b̄Ψ(t) + ē

(2.10)

where ā = aτ + c, b̄ = bµ, and ē = aζ + bν + e. Therefore, only measurements of

outside air temperature and CO2 concentration levels are needed to determine the

disturbance to the model. The values of ā, b̄, and ē are estimated along with other

parameters of the model.

2.3.1.4 Additive uncertainty

We linearize the original nonlinear dynamic system and use Euler’s discretization

method to obtain a linear discrete-time system. We also add an additive uncertainty

to the state update equation to account for model uncertainties, leading to:

xk+1 = Axk +Buk + E(dk + wk) (2.11)
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where the uncertainty wk ∈ Rr is a stochastic additive disturbance. t ∈ R refers to

time in continuous-time domain and k ∈ Z refers to time in discrete-time domain.

The set of possible disturbance uncertainties is denoted by W and wk ∈ W ∀k =

0, 1, ..., N − 1. For this study, we consider box-constrained disturbance uncertainties

given by

Wλ = {w : ||w||∞ ≤ λ} (2.12)

2.3.2 State-Parameter Estimation

Using (2.1) for each wall and (2.2) for each room node in the building network, system

dynamics is given by:

ẋ1 = 1
Cr

1
·
((

1
R121

− 1
R131

− 1
R141

− 1
R151

− 1
Rwin

15
− ṁr1ca

)
x1

+ x2

R121

+ x3

R131

+ x4

R141

+ x5

R151

+ caTs1ṁr1 + T5

Rwin
15

+AwinτQrad + Q̇int1

)
(2.13a)

ẋ2 = 1
Cw

21
.

(
x1

R211

−
(

1
R211

+ 1
R212

)
x2 + T2

R212

)
(2.13b)

ẋ3 = 1
Cw

31
.

(
x1

R311

−
(

1
R311

+ 1
R313

)
x3 + T3

R313

)
(2.13c)

ẋ4 = 1
Cw

41
.

(
x1

R411

−
(

1
R411

+ 1
R414

)
x4 + T4

R414

)
(2.13d)

ẋ5 = 1
Cw

51
.

(
x1

R511

−
(

1
R511

+ 1
R515

)
x5 + T5

R515

+Aw51αQrad

)
(2.13e)
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where x1 is the room temperature (Tr1), and x2, x3, x4, x5 are the peripheral walls’

temperature (i.e. Tw12, Tw13, Tw14, Tw15). T2, T3, T4, T5 are the temperatures of the

surrounding zones, as shown in Fig. 2.4 and Fig. 2.5. These temperatures act as

disturbance to the system dynamics for a single zone thermal model, and x is the

state vector:
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Figure 2.5: Temperatures of neighboring zones acting as disturbance to
the PAB model.

x =
[
Tr1, Tw12, Tw13, Tw14, Tw15

]T
(2.14)

One way to adapt the model to account for time varying parameters is to assume
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that all the parameters of the model are independent, and hence define a state corre-

sponding to each parameter. However, this would lead to excessive number of states

(e.g. 18 states for a room shown in Fig. 2.4). To overcome this problem, we take

a different approach. We reduce the number of states by exploiting the redundan-

cies in the resulting model. For instance, thermal properties of wall material (e.g.

specific heat capacity and conductive heat transfer coefficient) are the same across

the building, as these are functions of the materials used as the building walls. In

addition, the thickness of internal walls and thickness of peripheral walls are the same

throughout the building. Following this approach, we are able to reduce the number

of independent parameters from 18 to 10. Hence we re-write the thermal equations

of the walls, i.e. (2.13b)-(2.13e) as follows:

ẋ2 = x1

CwRw
− 2
CwRw

x2 + T2

CwRw
(2.15)

ẋ3 = x1

CwRw
− 2
CwRw

x3 + T3

CwRw
(2.16)

ẋ4 = x1

CwRw
− 2
CwRw

x4 + T4

CwRw
(2.17)

ẋ5 = x1

Cw
51R511

−
(

1
Cw

51R511

+ 1
Cw

51R515

)
x5 + T5

Cw
51R515

+ Aw51αQrad

Cw
51

(2.18)
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As shown in (2.19), CwRw is not a function of the area of wall:

CwRw = (cwAwLw)(Lw/2
kwAw

+ 1
hinAw

) = cwL
2
w

2kw
+ cwLw

hin
(2.19)

where cw, kw, Aw and Lw are the specific heat capacity, conductive heat transfer

coefficient of wall material, area and thickness of wall, respectively, and hin is the

indoor convective heat transfer coefficient. Hence, we can use one common term to

express thermal capacitance-resistance between centerline of each wall and the node

on each side of the wall for the equations of walls in the building.

We designate a state variable to all the independent time-varying parameters of the

system as follows:

x6 = 1
Cr

1R121

x7 = 1
Cr

1R131

(2.20)

x8 = 1
Cr

1R141

x9 = 1
Cr

1R151

(2.21)

x10 = 1
Cr

1
x11 = 1

CwRw

(2.22)

x12 = 1
Cw

51R511

x13 = 1
Cw

51R515

(2.23)

x14 = α

Cw
51

x15 = 1
Rwin

15
(2.24)

Rate of change of these states is equal to zero, as shown in the corresponding state

update equation (2.30). We then add a low-magnitude fictitious noise to the dynamics
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of parameters to allow slow changes in their values over time.

ẋ1 = (x6 − x7 − x8 − x9 − x10x15 − x10u2ca)x1 + x6x2 + x7x3

+ x8x4 + x9x5 + (cau1u2 + T5x15 + AwinτQrad + Q̇int).x10 (2.25)

ẋ2 = (x1 − 2x2 + T2).x11 (2.26)

ẋ3 = (x1 − 2x3 + T3).x11 (2.27)

ẋ4 = (x1 − 2x4 + T4).x11 (2.28)

ẋ5 = x1x12 − (x12 + x13)x5 + T5x13 + Aw51x14Qrad (2.29)

ẋi = 0 ∀i = 6, 7, ...15. (2.30)

u is the input vector given by:

u =

Ts1
ṁr1

 (2.31)

In summary, we express the dynamics of the system using following state update

model:

xk = f(xk−1, uk−1, dk−1, wk−1)

zk = h(xk) + vk (2.32)

where wk and vk are the process and measurement noise and are assumed to be zero
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mean multivariate Gaussian process with variance Wk and Vk, (i.e. wk ∼ N (0,Wk)

and vk ∼ N (0, Vk)), respectively.

2.3.3 Estimation Algorithm

In order to estimate the unknown parameters of the system we augment the states

of the system with a vector pk which stores the parameters of the system, with a

time evolution dynamics of pk+1 = pk, as will be detailed in Appendix B. Due to the

multiplication of states and parameters the resulting dynamic system is nonlinear.

Nonlinear estimation algorithms such as Extended Kalman Filtering (EKF) or Un-

scented Kalman Filtering (UKF) can then be exploited to simultaneously estimate

the states and the parameters of the system.

An alternative to using a Kalman filter would be a simple observer. However, given

the random variations, inaccuracies and uncertainties in the system dynamics, as

described earlier in the chapter, using a Kalman filter is suggested in order to get a

statistically optimal estimate of system states [59, 60].

In our previous work [61] we showed that UKF outperforms EKF for building parame-

ter estimation. Thus, we only focus on UKF in this study. We present an algorithmic

description of the UKF in Appendix B, omitting some theoretical considerations.
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2.3.3.1 Estimation Results

The test-bed from section 2.2 was used to collect measurements from January 11 to

January 24, 2013. To remove noise from the temperature measurements, a second

order Butterworth lowpass filter with cutoff frequency of 0.001 (Hz) was used. Fig. 2.5

shows the temperatures of the neighboring zones and the outside temperature which

act as disturbance to the PAB model. Fig. 2.6 depicts the model inputs including the

air mass flow rate and the supply air temperature. In order to obtain the best initial

parameter values for the Kalman filter algorithm, we first perform a (static) parameter

identification on the historical data. We consider the first part of the data as training

set (shown in red in Fig. 2.7), and obtain the best parameters that minimize the least

square error between the simulation and the measurement data. The result of this

step is used to simulate the temperature evolution of the room air for the next three

days (shown in black in Fig. 2.7). Due to time-varying parameters and disturbance

to the model, it is difficult to find a set of parameters for the model which results in

good temperature tracking for all days including weekdays and weekends, and hence,

as shown in Fig. 2.7, the results of simulations for the following days in the testing

data set is even worse.

The obtained initial parameters from the off-line calibration step is used as initial

value for the UKF algorithm.
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Figure 2.6: Inputs to the PAB model.

For the off-line parameter calibration practice, we used the historical data of two

weeks where the first 60% of the data was used for training (calibration) and the

remaining 40% of data was used for testing. The temperature estimation of room and

walls, using UKF are depicted in Fig. 2.8 and Fig. 2.9. The evolution of parameters

over time is shown in Fig. 2.10. The parameters evolve over time and the steady

state values are not necessarily close to the initial points as expected, due to the

changing environment. Note that the first part of the estimation of wall temperature

by UKF leads to overshoot in the wall temperature, however, this overshoot is quickly

recovered as UKF uses more data to tune the parameters more accurately.
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Figure 2.7: Off-line parameter calibration of the PAB model using room
temperature measurements. The first set of data (shown in red) is the train-
ing data. We identify the parameters in one shot optimization by minimizing
the `2 norm of the error between simulation and measurement data. Then
we used the obtained parameters from the training data set (off-line calibra-
tion results) to predict the temperature evolution for the next days (shown
in black).

UKF is also tested to estimate the temperature in the presence of process and mea-

surement noise (w and v, respectively) as shown in Fig. 2.11. We add process and

measurement noise to the model and use UKF to estimate the temperatures. UKF

is used to estimate the temperature from the measurements. Performance of UKF is

shown with model uncertainty w, and measurement noise v, given by wk ∼ N(0, 0.2)

and vk ∼ N(0, 1.4), respectively. As seen in Fig. 2.11, UKF is able to cancel out the

effect of noise very effectively.
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Figure 2.8: Estimated and measured room temperature using the designed
UKF.

2.4 Controller Design

In this section we study the impact of the use of the PAB model in a model-based

control design framework. State-of-the-art is to use a fixed-parameter model to design

MPC for buildings. We propose using the updated parameter model obtained using

the Kalman filter estimation process at each time step as shown in Fig. 2.3, which

results in a more accurate model and hence lower model uncertainty. The underlying

assumption here is that the parameters of the system do not change from time t to

t+1. At the next time step, MPC uses the model with updated parameters, to derive

the optimal inputs. Inputs are implemented on the system and at the next sampling
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Figure 2.9: Estimated temperature of walls using UKF. We have zoomed
the figures to focus on the more steady estimates of the walls rather than
the first part transient behavior.

time new states (temperatures) are measured and sent to the PAB model, and this

process repeats.

We also formulate a nominal MPC and a robust model predictive control (RMPC),

and study their performances for various model uncertainty levels. MPC assumes

that the model is perfect (no uncertainty), and the RMPC assumes that the model

is uncertain and designs a robust control policy for a specific class of uncertainty.

The results from MPC and RMPC are compared to a conventional rule-based control

(RBC) for a typical building. Novel performance indices are proposed to compare

the performance of these controllers. We also present a methodology to select the best
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Figure 2.10: Estimated parameters of the PAB model using the designed
UKF.

controller among the ones studied in this section for any given model uncertainty,

which leads to optimum trade-off between energy consumption and comfort level.

2.4.1 ASHRAE requirements for Building Climate Control

ASHRAE’s Standard 55 [62], Thermal Environmental Conditions for Human Occu-

pancy, suggests the condition which is acceptable to at least 80% of occupants. Ac-

cording to this standard, the ideal temperature in typical clothing in summer (0.35-0.6

clo) is in the range of 22.5 ◦C to 26 ◦C. The operative temperature for occupants in

normal clothing insulation in winter which is between 0.8 to 1.2 clo should be in range
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Figure 2.11: Performance of the designed UKF in the presence of model
uncertainty and measurement noise.

of 20 ◦C to 23.5 ◦C. This temperature range is based on a metabolic rate of 1.2 met

(70 W/m2) and 60% RH. More details can be found in [63, 64, 65]. ASHRAE’s

Standard 62.1 [66], Ventilation for Acceptable Indoor Air Quality, explains outdoor

air ventilation requirements for different types of indoor spaces. When the major

contamination source is proportional to number of occupants, the minimum venti-

lation rate is enforced in CFM (L/s) and when other factors play the main role in

contamination, the minimum ventilation rate is enforced in CFM/ft2 (L/s.m2) [65].

We use this as a guideline for control design in this section.
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2.4.2 Rule-Based Control (RBC)

The rule-based controller in this study is a conventional on-off HVAC controller. The

time constant of the control action implementation is ∆t. The controller opens the

dampers of conditioned air flow to the thermal zones when heating is required and

keeps it fully open for the duration of ∆t. In the next time step the controller checks

the temperature again and adjusts the damper position if the room temperature is

within the comfort zone, or keeps it open if the room air temperature is still outside the

comfort zone. In on-off control, position of the dampers can be either the min value

or the max value. When system goes to the cooling mode, supply air temperature

changes accordingly. The experimental data presented here is for the heating mode

only. To be consistent and to perform a fair comparison, we use the same time

constants ∆t for all controllers.

2.4.3 Model Predictive Control (MPC)

A model predictive control problem is formulated with the objective of minimizing

a linear combination of the total and the peak airflow. We implement the control

inputs obtained from the MPC with the linearized system dynamics of the model on

the original nonlinear model for forward simulation.
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Fan energy consumption is proportional to the cubic of the airflow. Hence minimiz-

ing the peak airflow would dramatically reduce fan energy consumption. We have

considered a cost function for the MPC which comprises linear combination of the

total input airflow (`1 norm of input) and the peak of airflow (`∞ norm of input).

The alternative would be to use the actual nonlinear function of fan energy consump-

tion. However, it would lead to nonlinear MPC which is much slower than linear

MPC. We use the proposed cost function to achieve better computational properties.

Also in order to guarantee feasibility (constraint satisfaction) at all times, we imple-

ment soft constraints. The predictive controller solves at each time step the following

optimization problem:

min
Ut,ε̄,ε

{|Ut|1 + κ|Ut|∞ + ρ(|εt|1 + |εt|1)} = (2.33a)

min
Ut,ε̄,ε

{
N−1∑
k=0
|ut+k|t|+ κmax(|ut|t|, · · · , |ut+N−1|t|) + ρ

N∑
k=1

(|εt+k|t|+ |εt+k|t|)} (2.33b)

s.t. xt+k+1|t = Axt+k|t +But+k|t + Edt+k|t, k = 0, ..., N − 1 (2.33c)

yt+k|t = Cxt+k|t, k = 1, ..., N (2.33d)

U t+k|t ≤ ut+k|t ≤ U t+k|t, k = 0, ..., N − 1 (2.33e)

T t+k|t − εt+k|t ≤ yt+k|t ≤ T t+k|t + εt+k|t, k = 1, ..., N (2.33f)

εt+k|t, εt+k|t ≥ 0, k = 1, ..., N (2.33g)

where Ut = [ut|t, ut+1|t, · · · , ut+N−1|t] is vector of control inputs, and ε =
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[εt+1|t, · · · , εt+N |t] and ε = [εt+1|t, · · · , εt+N |t] are the slack variables used to utilize

soft constraints on room temperature. yt+k|t is the room temperature vector, dt+k|t is

the disturbance load prediction, and T t+k|t and T t+k|t for k = 1, · · · , N are the lower

and upper limits on the room temperature, respectively. U t+k|t and U t+k|t are the

lower and upper limits on the airflow input by the variable air volume (VAV) damper,

respectively. Note that based on the ASHRAE Standard 62.1- Section 6.2.6.1, during

unoccupied hours, ventilation systems should be able to maintain the required non-

zero ventilation rates (U t+k|t > 0) in the breathing zone [66]. ρ is the penalty on the

comfort constraint violations, and κ is the penalty on peak power consumption.

At each time step only the first entry of Ut is implemented on the model. At the next

time step the prediction horizon N is shifted leading to a new optimization problem.

The prediction horizon is N = 24, and at each time step only the first entry of the

input vector Ut is implemented on the model. This process is repeated over and over

until the total time span of interest is covered. We use YALMIP [67] to set up the

MPC problem in MATLAB.
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2.4.4 Robust Model Predictive Control (RMPC)

We consider additive uncertainty to the system model as previously described

in (2.11). A schematic of the robust optimal control implementation on the non-

linear building model is shown in Fig. 2.12. In RMPC algorithm, the cost function is

the same as in the one in MPC case:

Figure 2.12: Schematic of the robust model predictive control implemen-
tation.
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min
Ut,ε̄,ε

{||Ut||1 + κ||Ut||∞ + ρ(||εt||1 + ||εt||1)} (2.34)

However, state and input constraints are as follows:

xt+k+1|t = Axt+k|t +But+k|t + E(dt+k|t + wt+k|t) k = 0, 1, ..., N − 1 (2.35a)

yt+k|t = Cxt+k|t k = 1, 2, ..., N (2.35b)

T t+k|t − εt+k|t ≤ yt+k|t ≤ T t+k|t + εt+k|t k = 1, 2, ..., N (2.35c)

U t+k|t ≤ ut+k|t ≤ U t+k|t k = 0, 1, ..., N − 1 (2.35d)

εt+k|t, εt+k|t ≥ 0 k = 1, 2, ..., N (2.35e)

∀ wt+k|t ∈ W k = 0, 1, ..., N − 1 (2.35f)

The only difference with respect to MPC algorithm is the introduction of additive

uncertainty term w in the state update equation.

Using this formulation, we derive a robust counterpart of an uncertain optimization

problem in which constraints are satisfied for all possible uncertainties, and worst-case

objective is calculated.

It is shown in [36] that the open-loop constrained robust optimal control (OL-CROC)
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is conservative. . The closed-loop constrained robust optimal control (CL-CROC)

formulation overcomes this issue but it can quickly lead to an intractable problem [68].

Next, we review the feedback prediction concept followed by our proposed formulation

to improve upon the feedback prediction scheme.

2.4.4.1 Feedback predictions

The idea in feedback prediction, is to introduce new decision variables and param-

eterize the future control sequences using the future disturbances and an additive

independent decision variable.

Define an affine disturbance feedback as:

ui :=
i−1∑
j=0

mi,jwj + ni ∀i = 1, 2, ..., N − 1 (2.36)

Therefore the input vector can be written as U = Mw + n, where M and n are given

by

M :=



0 · · · · · · 0

m1,0 0 . . . 0
... . . . . . . ...

mN−1,0 · · · mN−1,N−2 0


, n :=



n0

...

...

nN−1


(2.37)
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and the vector of disturbances is given by w = [w0 w1 · · · wN−1]′.

The control sequence is parameterized directly in the uncertainty. What we have here

is basically a sub-optimal version of the closed-loop min-max solution [68].

2.4.4.2 Two-Lower-Diagonal Structure (TLDS):

The main problem with the min-max formulation based on LTS parameterization is

the excessive number of decision variables and constraints. The reason is the high-

dimensional parameterization of matrix M. To resolve the issue of high-dimensional

parameterization of matrix M, we propose the following new parameterizations.

By analyzing the structure of the optimal matrix M, it was observed that the pa-

rameterization of the input does not need to consider feedback of more than past two

values of w at each time, hence we propose the following disturbance feedback.

ui := mi,i−2wi−2 +mi,i−1wi−1 + ni

=
i−1∑
j=i−2

mi,jωj + ni ∀i = 1, 2, ..., N − 1
(2.38)

and the corresponding parameterization matrix M is an N ×N matrix that has the
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entries on the first and second diagonal of M below its main diagonal as decision

variables and 0 elsewhere.

n remains as in (2.37). With this structure we exploit the sparsity of the feedback

gain matrix to enhance the computational characteristics of the controller.

2.4.5 Performance Indices

To compare the overall performance of the proposed controllers we define indices to

measure the energy consumption and comfort level provided by each controller. In

addition, we define a new index to evaluate the overall performance of each controller

considering both the energy and comfort indices.

† The energy index Ie in (kWh) is defined:

Ie =
∫ 24

t=0
[Pc(t) + Ph(t) + Pf (t)] dt (2.39)

where cooling power Pc, heating power Ph and fan power Pf are determined by:

50



Pc(t) = ṁc(t)cp[Tout(t)− Tc(t)] (2.40a)

Ph(t) = ṁh(t)cp[Th(t)− Tout(t)] (2.40b)

Pf (t) = αṁ3(t) (2.40c)

cp = 1.012(kJ/kg.oC) is the specific heat capacity of air and α = 0.5(kW.s3/kg3)

is the fan power constant [25]. Using these constants, the fan power values, in

(kW), can be calculated.

† The discomfort index Id in degree Celsius hour (oCh) is defined as the sum of

all the temperature violations in the course of a day.

Id =
∫ 24

t=0

[
min

{∣∣∣T (t)− T (t)
∣∣∣ , |T (t)− T (t)|

}
.1B(t)c(T (t))

]
dt (2.41)

where B(t) = [T (t), T (t)] is the comfort zone at time t and 1 is the indicator

function.

† A good control performance means not only low energy consumption, but also

low resulting discomfort. To assess the overall performance of the controllers,

we need to examine both Ie and Id at the same time. Using the two indices

defined above we define a third index called Overall Performance Index (IOP ).

The intuition behind this new index is to take into account the energy and
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discomfort index in one single term. IOP is defined as:

IOP = (I∗d − Id)/||Id||∞
Ie/||Ie||∞

(2.42)

where I∗d is the maximum allowed discomfort and ||.||∞ denotes infinity norm

or the maximum value of energy indices among all three controllers. Negative

value of IOP means that the discomfort index is not within the preferred range.

The lower the Id and Ie are, the higher the IOP will be. Therefore, the higher

the IOP , the better the overall performance. In this study, the limit on the

allowed discomfort index is heuristically chosen to be I∗d = 0.5(◦Ch) to ensure

adequate comfort level.

2.4.6 Control Results

To illustrate the effectiveness of the controllers proposed in subsections 2.4.3 and 2.4.4,

we assess their performances for different model uncertainty values denoted by δ and

defined as

δ = λ

||d||∞
× 100 [%] (2.43)

where λ is the `∞ norm bound of the uncertainty as given by (2.12) and d =

[d′1, d
′
2, ..., d

′
N ]′ is the disturbance realization vector. d′ represents transpose of vector
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d.

A time constant of ∆t = 1 (hr) is used for all controllers. We implement the intro-

duced model predictive controllers with a prediction horizon of N = 24. The choice

of N = 24 is to provide a good balance between performance and computational cost

for the MPC framework in this study.

We use the following numerical values for parameters in (2.33) and (2.35). U =

63 cfm (0.03 m3/s) is the higher limit on air mass flow, [T .|t T .|t] = [20 22]oC during

occupied hours, and [T .|t T .|t] = [19 23]oC is used during unoccupied hours. For the

simulations we use κ = 0.75 and ρ = 50. ε and ε are the slack variables used to avoid

feasibility problem, where ε and ε are the vectors storing slack variables.

Optimal controller and the resulting room temperature with the presence of a box-

constrained uncertainty in four cases are depicted in Fig. 2.13. Measurements, as

shown in black, shows the air mass flow and temperature recording for the room

using a simple existing control policy of the building HVAC system. RBC represents

the result of the rule-based control. MPC refers to the performance of a model-based

control algorithm in which no knowledge of the model uncertainty is known a-prior to

the control algorithm. RMPC refers to the simulation of the control algorithm which

considers the model uncertainty bound and utilizes the uncertainty feedback strategy

of (2.36) in designing the control policy.
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Figure 2.13: Control input and resulting temperature profile for the ex-
isting controller on the building (Measurements), RBC, MPC, and robust
MPC controllers. The additive uncertainty bound is considered δ = 60% in
this case.

We consider stochastic uncertainties with different uncertainty bounds (λ) as intro-

duced in (2.12). The MPC does not have any a-priori information regarding the

additive uncertainty, and calculates the controller solely based on the deterministic

system dynamics. However the RMPC integrates the uncertainty bound information

in the control derivation. Controller performances are evaluated based on indices

introduced in Section 2.4.5. Problem is solved using CPLEX 12.2 [69] on a 2.67 GHz

machine with 4 GB RAM. Here are the discussions of the results:

Computational Aspects: Exploiting the TLDS structure results in the same con-

trol law that was obtained from the LTS structure. However, matrix M of LTS has
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l.m.rN(N−1)
2 variables (quadratic in N) while matrix M of TLDS has l.m.r(2N − 3)

variables (linear in N), and hence exhibits shorter computation time. On average, the

simulation time for TLDS is 30% less than the LTS structure, as shown in Table 2.1.

Tables

Table 2.1
Comparison of LTS and TLDS uncertainty feedback parameterizations

results for the case of δ = 60%.

Number of Average
Controller feedback decision simulation time Ie Id

variables for N = 24, in (s) (kWh) (oCh)

LTS l.m.r(N(N+1)
2 ) 200 16467 0

TLDS 3l.m.r(N − 1) 138 16467 0

Comfort: It is observed from Fig. 2.13, that the RMPC is the only controller that

is able to keep the temperature within the allowed comfort zone, at all times during

this test simulation, meaning maintaining minimum level of discomfort (Id ≤ I∗d),

while RBC still does a very good job and MPC fails to do so, resulting to Id > I∗d

for all δ ≥ 40%. Fig. 2.14 depicts how discomfort index Id, varies with additive

model uncertainty δ for MPC, and RMPC. Note that different data points for one δ

value refers to simulations with different random sequences. The reason for such a

wide variation of the simulation results, specially for large values of δ stems from the
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fact that depending on the value of the random variable at any time, the resulting

disturbance vector can either lead to temperature rise or fall with respect to the

nominal disturbance value. It is shown that RMPC manages to keep the perfect

comfort level (Id = 0), for additive model uncertainty up to δ = 75%, while the

MPC maintains the perfect comfort level for uncertainty bounds up to δ = 20%.

The discomfort index for MPC goes as high as 4.61 (oCh) while the value for RMPC

reaches 1.2 (oCh) in the worst case in the simulations corresponding to δ = 100%.

Since RBC is not a model-based control technique, its performance does not depend

on values of δ, hence the straight horizontal line in Fig. 2.14 (Id = 0.25oCh).

0 25 50 75 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Additive model uncertainty, δ (%)

D
is

co
m

fo
rt

 in
de

x,
 I d (°

C
h)

 

 

RBC
MPC
RMPC
Trendline of MPC data
Trendline of RMPC data

Parameter Adaptive 
Building (PAB) Model

Figure 2.14: Discomfort index Id versus additive model uncertainty (δ).
We generate a uniform random sequence based on the disturbance prediction
error value δ. The generated random sequence is used in the simulations for
making this graph. Trendlines in this figure are calculated based on least
square estimation.
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Energy Consumption: Fig. 2.15 depicts the variations of energy index Ie, versus the

uncertainty bound on the unmodeled dynamics. It is clear that the energy index for

RMPC increases dramatically with δ, while the energy index for MPC only changes

slightly. However, this comes with the drawback of increased discomfort index for

MPC. Fig. 2.15 also shows energy consumption of RBC (Ie = 1.43×104 kWh). MPC

for all values of δ leads to a lower amount of energy consumption than RBC, but

RMPC leads to more energy consumption than RBC soon after δ = 35%.
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Figure 2.15: Energy index Ie versus additive model uncertainty (δ). The
data points for this graph were generated using a similar technique as in
Figure 2.14. Trendlines in this figure are calculated based on least square
estimation.

Comfort-Energy Trade-off: An important point to notice from Fig. 2.15 is how

57



much more energy needs to be supplied to the HVAC system to maintain the com-

fort level in the presence of imperfect and faulty unmodeled dynamics predictions.

Consider the case where δ = 75%. MPC will lead to a discomfort index of 1.7oCh

on average, while the RMPC is able to maintain the temperature below a discomfort

index of 0.016oCh on average. However this level of comfort provided by the RMPC

comes at a cost of energy consumption of 3 times more than that of the MPC case.

Note that due to the trade-off between comfort and energy consumption, the choice

of which controller to use is on the building HVAC operator, and depends on various

factors such as criticality of meeting the temperature constraints for the considered

thermal zone in the building, and availability and price of energy at that time of the

day/year.

As observed from Fig. 2.14 and 2.15 the behavior of controllers vary considerably as

the model uncertainty increases. For instance, the energy required to keep the same

level of comfort for RMPC in the case of δ = 75% is almost 3 times the energy required

to provide the same level of comfort when δ = 25%. Fig. 2.14 and Fig. 2.15 show

the importance of a good model like PAB in minimizing the energy consumption

of building HVAC systems for a desirable comfort level using model-based control

techniques by accurately capturing the dynamics of the system.

MPC and RMPC versus RBC: Fig. 2.16 demonstrates savings of MPC and
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RMPC versus RBC. As shown, the maximum theoretical energy saving of MPC com-

pared to RBC is 36%, and that of RMPC is 30% for the building studied. These

values decrease as model uncertainty increases. Energy saving of MPC versus RBC

stays positive even for large values of model uncertainty, while energy saving of RMPC

versus RBC is positive only for model uncertainty values up to about 34%, and is neg-

ative for larger model uncertainties (i.e. RMPC consumes more energy than RBC).

Figure 2.16: Energy saving of MPC and RMPC compared to RBC as a
function of model uncertainty. The blue eclipse shows operating area of the
PAB model which keeps the model uncertainty very small.

The results of an extensive study in [70] show that MPC HVAC control can potentially

provide 16%-41% building energy saving compared to rule-based controllers, which

is in agreement with our findings. The saving depends on various factors including

climate zone, insulation level, and construction type. Stochastic MPC was shown
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in [70] to be superior to the rule-based control given the uncertainties in occupancy

and weather forecast. Our findings also show that the robust MPC outperforms the

rule-based control in terms of energy consumption and user comfort. Although these

two MPC techniques (robust and stochastic MPC) both address model uncertainty,

they are formulated differently and hence can lead to different performance results.

A comparative analysis of these two MPC techniques is the subject of our future

work. Given the accuracy of the PAB for removing model uncertainty, designing

MPC scheme based on PAB is a promising solution for building control problem.

For simulation evaluation of energy consumption and provided comfort level, we have

compared the overall performance of the three controllers using IOP . The results,

as shown in Fig. 2.17, suggest that for model uncertainties less than 30% MPC is

the best controller type. For model uncertainties above 30%, RMPC and RBC are

close in performance while for δ between 30% and 67% RMPC is the best, and for

model uncertainties larger than 67%, RBC leads to better overall performance than

model-based control techniques. This information can be of utility for choosing a

controller type for building HVAC system. As described in the chapter, proper choice

of building HVAC control would depend on the accuracy of the given building model.

Range of uncertainties for a given building model can be obtained by taking the

difference of the temperature predictions from the building model and temperature

measurements from a building. The statistics of such uncertainty can be found once

such data is available. The mean and variance of the uncertainty from the statistical
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analysis can be used to select the best controller type.

Figure 2.17: Overall performance index for RBC, MPC and RMPC as a
function of model uncertainty. The red zone demonstrates the region which
MPC outperforms RMPC and RBC as it yields a higher IOP . The green
zone represents the region that IOP of RMPC is higher than that of MPC
and RBC. RBC dominates in terms of IOP in the blue zone. In the gray
zone the resulting discomfort index is not acceptable.

2.5 Summary and Conclusion

Model uncertainty is an unavoidable challenge for modeling and model-based control

of a building HVAC system. In this chapter, we characterized the impact of model

uncertainty on MPC controllers and presented two approaches to minimize model

uncertainty for building controls. First, we presented a new modeling framework

for simultaneous state estimation and parameter identification of building predictive
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models. This resulted in a Parameter-Adaptive Building (PAB) model which cap-

tures system dynamics through an online estimation of time-varying parameters of a

building model. The PAB model aims at reducing model uncertainty and can be used

for both modeling and control. Second, we presented an MPC framework that is ro-

bust against additive uncertainty. The new framework is a closed-loop Robust Model

Predictive Control (RMPC) utilizing uncertainty knowledge to enhance the nominal

MPC. The RMPC is capable of maintaining the temperature within the comfort zone

for model uncertainties up to 75%. The specific contributions are listed below:

1. We constructed a nonlinear state space model by augmenting the parameters of

the system into the state vector. We exploited the similarities in the physical

properties such as wall materials and thicknesses in the building under study,

and reduced the number of independent parameters in the building model. A

similar approach is expected to apply to other building modeling practices.

2. We presented a PAB modeling framework that uses an unscented Kalman filter

(UKF) to simultaneously estimate all the states of the dynamic model and

continuously tune the parameters of the building model. The PAB was validated

with the experimental HVAC data collected from a building test bed. Successful

application of UKF in this work for simultaneous state and parameter estimation

of a building model is promising for other building control applications which

deal with model uncertainty.
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3. We proposed a new uncertainty feedback parameterization of the control input,

TLDS, for the closed loop RMPC which results in the same energy and dis-

comfort indices as the previous parameterization, LTS, with a lower number of

decision variables, linear in time horizon N, as opposed to quadratic, for the

LTS. The new TLDS parameterization results in an average simulation time of

30% less than LTS.

4. Closed loop RMPC outperforms nominal MPC considering the provided level

of comfort. However, higher comfort comes at the cost of dramatically higher

energy consumption for RMPC. For uncertainty range of 30% to 67%, RMPC

leads to better overall performance compared to MPC and RBC, while it fails to

provide a better energy-comfort trade-off if model uncertainty is less than 30%

or more than 67%. It should be noted that the model uncertainty values are

relative for this case study. Selecting the controller types based on the model

uncertainty may vary for different buildings.

5. We proposed a new performance index (IOP ) to assess buildings’ energy con-

sumption and comfort level simultaneously. The IOP index is used for evaluating

different building controllers. IOP index can be used to generate a guideline for

choosing appropriate controller type for buildings. This can be helpful for build-

ing control community for deciding on a proper controller type based on how

accurate an available building model is for model-based controller design.

6. We found that the best choice for controller type changes from MPC to RMPC,
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and then finally to RBC as the model uncertainty increases. A typical RBC

controller outperforms model-based controllers (MPC and RMPC), if building

model uncertainty is above 67%.
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Chapter 3

Optimal Exergy Control of

Building HVAC System1

Exergy or availability is an accurate metric related to quality of energy and it is used

to determine sustainability of an energy system. Exergy has been extensively used

to evaluate efficiency of energy systems and energy conversion processes. An exergy

model for a building is presented in this chapter. In this PhD dissertation, exergy

destruction, which indicates the loss of work potential, is formulated as a function

of physical parameters of the building model and environment. To minimize exergy

destruction in an Heating, Ventilation and Air-Conditioning (HVAC) system, we de-

velop model predictive control (MPC) technique using the exergy model. Comparing

1This chapter has been published in Journal of Applied Energy [2]
(doi:10.1016/j.apenergy.2015.07.051) with the permission from Elsevier as shown in Appendix E.
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to a traditional onâĂŞoff controller for the building, the proposed exergy-based MPC

(XMPC) reduces the exergy destruction and energy consumption up to 22% and

36%, respectively. Simulation results also indicate the advantage of XMPC over con-

ventional energy-based MPC (EMPC). The results show that XMPC reduces exergy

destruction by 4% compared to EMPC as well as saving 12% more energy.

3.1 Introduction

Exergy is described as the maximum theoretically available energy that can do work

with respect to a given state via a reversible process [71]. A thermodynamic system’s

potential to do work increases as it moves away from its equilibrium (e.g., a higher

temperature difference with the environment [72]). Conversely, there is no work

potential if a system is at the thermodynamic equilibrium with its environment and

the exergy of the system in that condition is zero. The First Law of Thermodynamics

(FLT) is related to energy conservation. However, FLT does not provide insight about

the theoretical efficiency limit due to irreversibility/deficiency in the processes and

the direction of natural processes. While the Second Law of Thermodynamics (SLT)

concerns entropy generation and irreversibilities which cause deficiency and energy

waste in a system. SLT asserts that a spontaneous process or energy transfer occurs

toward entropy increase. According to SLT, energy has quality and quantity. The

Quality of energy decreases in natural processes [73]. Exergy-wise controls provide a
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means to maximize the usage of energy quantity and minimize degradation of energy

quality during a controlled process. Exergy is based on the First and Second Laws of

Thermodynamics and unlike energy, it is not conserved. Exergy models the amount

of useful energy with which a system has to work, hence, compared to energy, exergy

is a more appropriate metric to analyze power systems.

Heating, ventilation, and air conditioning (HVAC) accounts for more than 50% of

energy demand in buildings [12]. HVAC processes occur close to the environment

temperature and therefore are considered as low quality energy demands. However,

these demands are mostly granted with high quality energy (high exergy) sources

such as electricity from grid which itself is mainly obtained from very high exergy

sources such as fossil fuels. Thus, it is of a great importance to address low exergy

demand (e.g., HVAC demands) with low exergy sources such as renewable energy

sources produced by solar panels. HVAC systems can be operated in low exergy

fashion by applying exergy-aware control algorithm which reduces irreversibilities in

various energy subsystems such as thermal, mechanical and electrical that leads to

less exergy destruction, increasing the overall exergy efficiency of the system. In

other words, systems can be operated with less irreversibility and as a result, system

operation will be more energy efficient and more sustainable.

There are various categories of studies on exergy analysis of energy systems. For

building HVAC systems, a great number of studies have been performed for exergy
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analysis [74, 75, 76, 77, 78, 79, 80, 81, 82]. For instance, in [74] a comparison be-

tween four different heating systems is provided and exergy efficiency of the systems

are evaluated. In [76], authors present energy and exergy analyses of liquid natural

gas (LNG) conventional boiler, LNG condensing boiler and an air source heat pump

(ASHP). The energy efficiency values were found to be 8.69% for LNG condensing

boiler and 80.9% for ASHP, respectively. Most concentration of these studies are

on system assessment based on the First and the Second Laws of Thermodynamics

and these studies do not provide control techniques to enhance the HVAC system

efficiency. In recent years, use of low exergy (LowEx) system such as heat-pumps

and solar collectors have spurred great interests in HVAC studies for green buildings.

LowEx system and its applications have been studied before in [83, 84, 85, 86, 87, 88].

For instance, in [84] LowEx system implementation is presented. Their experimental

result show that using LowEx system can drastically increase HVAC system perfor-

mance. In [88], it is shown that HVAC systems are more exergy efficient if LowEx

energy sources are used. Since conventional HVAC systems use high-exergy energy

sources, they have not been designed or operated as exergy efficient systems. This

dissertation proposes a control strategy for this problem.

As reported in [23, 26, 28, 29, 50], MPC techniques compared to the existing rule-

based HVAC controllers offer potential energy saving up to 16%-41% for building

HVAC. Advantages of MPC for building energy control are discussed in details in

[23, 27, 28, 29, 30, 31, 32, 33, 35, 42]. Authors in [89, 90] reported results of MPC
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implementation on a real building and discuss its advantages and energy savings.

Thus, MPC is also used for the HVAC control framework in this study. All the pre-

vious studies [23, 27, 28, 29, 30, 31, 32, 33, 35, 42] for building HVAC controls center

on incorporating energy analysis for controller design. Our study investigates and

compares energy-wise and exergy-wise MPC framework for building HVAC controls.

Given the unprecedented focus on energy efficiency of built environment due to the

energy crisis over the last decade, and at the same time, increasing penetration of

renewable energy resources, controller design algorithms for building HVAC systems

with exergy considerations is crucial. Smart control algorithms enable us to reduce

exergy destruction, energy consumption and greenhouse gas emissions of buildings.

For instance, exergy loss has been defined as the cost function of a supervisory control

system in [14]. To minimize exergy loss, the controller makes accurate decisions based

on energy source types (fossils, renewables, nuclear, and hydro-power). The authors

in [14] made a comparison between exergy objective function with the price and

the carbon emission objective functions. Their results show economical benefits of

carefully managing exergy. In [91, 92] an optimal controller is developed to minimize

exergy destruction for a vapor-compression cycle (VCC). Their experimental results

in [91, 92] show that using exergy destruction as the objective function improves

performance and efficiency of integrated energy systems (IES). It has been shown

that exergy destruction can address irreversibilities across subsystems along with

different energy forms including chemical, mechanical, thermal and electrical.
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Fig. 3.1 summarizes the previous studies in building research using exergy and

SLT. These studies can be divided into three main categories: (i) analysis of sys-

tem performance, (ii) design optimization to increase efficiency, and (iii) exergy

inspired control. In the first category, exergy and SLT principles are applied to

analyze performance of building energy systems including building envelope [75],

HVAC [74, 76, 79, 80, 82, 83, 84, 85, 86], boilers [74, 76, 78], renewables integra-

tion [74, 93] and energy storage systems [94, 95, 96]. The main objective of this

category is to identify sources of inefficiency and irreversibility in the building energy

systems. In the second category, different studies have centered on design optimiza-

tion for building envelope and HVAC systems to determine the best system design to

minimize irreversibilities across the system components [77, 87, 97, 98, 99, 100, 101].

In the third category, control and online optimization techniques based on exergy

models are applied on building energy systems to increase system efficiency by de-

creasing sources of irreversible entropy generation that are affected by system control

variables. While a great deal of studies have been conducted on analysis and design

optimization of building systems based on exergy, only few works have been done

on exergy-based control of building systems [102, 103]. Applying online optimization

and control methods in buildings HVAC system increases efficiency and robustness

of system to time-varying buildings loads and parameters. As shown in [102], online

exergy optimization/control not only maximizes efficiency of thermal systems but also

makes these systems more robust to disturbances including weather fluctuation and
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varying load.

Figure 3.1: Background of exergy and SLT usage in building studies.

To evaluate efficiency of HVAC systems, energy is always used as a metric in the

context of building HVAC control. In this PhD dissertation, exergy of the system is

introduced as a more appropriate metric to assess performance of an HVAC system.

We formulate an exergy model of a testbed building and develop a MPC strategy

based on the minimization of exergy destruction. The optimal control problem re-

duces irreversible entropy generation of an HVAC system by minimizing exergy de-

struction, and addresses not only energy saving but also environmental concerns by

saving exergy. To the best of authors’ knowledge, this is the first study undertaken
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to develop an HVAC model predictive control system based on minimizing exergy

destruction. The results are very promising as the new MPC saves both energy and

exergy and takes into the account First and the Second Laws of Thermodynamics.

This work builds upon our preliminary results in [103] and develops a new approach

for exergy-based optimization in HVAC systems. This work also analyzes irreversible

entropy generation for different HVAC control strategies. The Chapter is organized

as follows. Section 2 explains the building testbed. In Section 3, we describe the

mathematical modeling approach for the thermal model and exergy model of the

building. Rule-based control, energy-based MPC and exergy-based MPC formula-

tions are presented in Section 4. The results of three different control strategies are

presented in Section 5, and conclusions are drawn in Section 6.

3.2 Test-Bed and Historical Data

The building testbed in this study is Lakeshore Center, at Michigan Technological

University (MTU), Houghton, Michigan. Ground-source heat-pumps (GSHPs) pro-

vide exergy required for heating and cooling in this three-story building and each zone

is equipped with a heat-pump to maintain comfort for occupants. Heat-pumps consist

of four main components: compressor, expansion valve, and two heat-exchanger coils
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known as evaporator and condenser. Heat-pumps work in either cooling mode and

heating mode. In the cooling mode, the condenser which is the outdoor coil, dissipate

heat and in the heating mode, the condenser is the indoor coil which releases heat to

thermal zones. Fig. 3.2 illustrates a schematic of a heat-pump in a zone in the testbed.

GSHPs exchange heat between the earth and the heating/cooling zones of the build-

ing. Average temperature of ground surface remains almost constant but differs based

on the geographic location and latitude [104]. As reported by the United states envi-

ronmental protection agency (EPA), GSHPs decrease energy up to 44 % compared to

ASHPs [105]. Therefore, GSHPs are considered as HVAC renewable energy efficient

technologies that have a high coefficient of performance (COP). The nominal COP

of our testbed heat-pump is 3.2 and we assume that COP remains constant during

different loads on the GSHP. GSHP units in the testbed have a multi-speed fan that

supplies hot/cold air to the zone when heating or cooling is needed. The existing

HVAC controller is a typical on-off controller to maintain desired temperature for

each zone. The existing controller maintains the comfort level by changing supply

air temperature. When zone temperature exceeds the lower limit, the compressor

of heat-pump is switched on until temperature reaches the comfort level. The zone

temperature is measured and logged by a combination of a temperature data-logger

(shown in Fig. 3.2) and a built-in temperature sensor with the accuracy of ±0.2◦C as

part of the Building Management System (BMS).
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Figure 3.2: Testbed schematic with a ground-source heat-pump (GSHP).
Sensor 1-a denotes the BMS temperature sensor and sensor 1-b belongs to
the data-logger installed in the room.

3.3 Mathematical Modeling

3.3.1 Building Thermal Model

Conductive heat transfer via walls and ceiling, convective heat transfer due to air

circulation, radiation through the windows, and solar radiation absorption are the
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main heat transfer mechanisms in buildings. We use the mathematical model for

heat transfer in buildings developed in [1, 61, 106].

In this section, we concisely discuss the building thermal model and nodal approach

presented in [42]. In nodal approach modeling, we consider buildings as graphs con-

taining walls and rooms as nodes. n shows number of nodes. m out of n nodes are

rooms and the remaining n−m nodes are walls. Fig. 3.3 shows the nodal schematic

of the room studied in this chapter. We show temperature of the wall between room

i and j by Twi,j. The following equation presents thermal heat transfer for the wall:

Cw
i,j

dTwi,j
dt

=
∑
j∈Nw

i,j

T rj − Twi,j
Rw
i,j

+ ri,jαi,jA
w
i,jQ

rad
i,j (3.1)

where Cw
i,j is heat capacity of the wall between room i and j. Thermal resistance

between the centerline of wall and the side of the wall is denoted with Rw
i,j. Wall

identifier is shown by ri,j which is equal to 0 for internal walls, and equal to 1 for

peripheral walls (i.e., either i or j is the outside node). αi,j and Awi,j are radiative

heat absorption coefficient and area of wall between room i and j, respectively. Qrad
i,j

represents the radiative heat flux density on wall (i, j) while Nw
i,j is the set of all

neighboring nodes to node wi,j. The following equation determines the temperature

of the ith room:
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Figure 3.3: Schematic of building thermal model using nodal approach.

Cr
i

dT ri
dt

=
∑
j∈N r

i

Twi,j − T ri
Rw
i,j

+πi,j
∑
j∈N r

i

T rj − T ri
Rwin
i,j

+

ṁr
i cpavg(T si − T ri ) + πi,jτ

w
i,jA

win
i,j Q

rad
i + Q̇int

i

(3.2)

where the temperature of ith room is represented with T ri and Cr
i denotes the room
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heat capacity. πi,j is window identifier which is equal to 0 if there is no wall between

room i and j, otherwise equal to 1. Thermal resistance of the window between room

i and j is denoted with Rwin
i,j and ṁr

i shows air mass flow into or out of the room i.

cpavg denotes the average specific heat of air and T si is the temperature of the supply

air to room i. Awini,j is the total area of window between room i and surrounding

room j, τwi,j is the transmissivity of glass of window between room i and j, Qrad
i is

the radiative heat flux density per unit area radiated to room i, and Q̇int
i denotes

the internal heat generation in room i. N r
i is the set of all nodes surrounding room

i. The thermal modeling details and estimation of the unmodelled dynamics can be

found in [23, 29, 42].

The disturbance to the model is an affine function of several factors including all

neighboring rooms temperature, T rj (t), internal heat generation in rooms Q̇int(t), and

radiative heat flux density on walls, Qrad
i (t). Hence, the disturbance vector is given

by:

dt = g(T rj (t), Qrad
i (t), Q̇int(t)) (3.3)

Heat transfer of each wall and room equations and disturbance form the system

dynamics of building are represented in state-space form by:
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ẋt = f(xt, ut, dt, t)

yt = Cxt (3.4)

where xt ∈ Rn is the state vector representing the temperature of the nodes in the

thermal network, ut ∈ Rlm is the input vector representing the air mass flow rate

and its temperature for each thermal zone, and yt ∈ Rm is the output vector of the

system which represents the temperature of the thermal zones. l is the number of

inputs to each thermal zone (e.g., air mass flow and supply air temperature). C is a

matrix of proper dimension. Fig. 3.4 validates our model, comparing estimated and

measured room temperature for four days in winter. The measured data are collected

from Sensor S1a shown in Fig. 3.3 and the estimated data are obtained using the

same input (supply air temperature) in the building thermal model presented in

equation (3.4). In the validation, we considered that the COP of the heat-pump

remains constant. Thus, the power consumed by the heat-pump is the heat flow into

the heating zone divided by the heat-pump COP.

Equation (3.4) describes the nonlinear time evolution of the system. The supply air

temperature (i.e., input to the system) is multiplied by the air mass flow, which is the

other time-varying known input to the model. Given that the air mass flow rate is

constant during day and has another constant value during night, we can divide the
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Figure 3.4: Experimental validation of building thermal model. (a) shows
estimated and measured room temperature. (b) illustrates heat-pump elec-
tricity consumption based on simulation and actual data.

system into two linear subsystems with constant mass flow rates at each operating

zone. In this approach, matrices A and B of the state-space model are updated at

each time step t. This results in linear parameter varying (LPV) system dynamics.

We use Euler’s discretization method to discretize the state update equation (3.4) for

controller design. The state-space model is given by:

xk+1 =


Adxk +Bduk + Eddk k ε [5, 6, . . . , 18]

Anxk +Bnuk + Endk k ε [19, . . . , 24, 1, 2, 3, 4]
(3.5)

79



where dk is the disturbance vector and E is a matrix with appropriate dimension. The

subscripts ‘d’ and ‘n’ refer to day and night, respectively. The procedure to derive

state-space matrices from the heat transfer equations is presented in Appendix I.

3.3.2 Building Exergy Model

In exergy analysis, definition of reference environment in terms of reference temper-

ature, pressure, and chemical composition are crucial. Ambient environment is used

as a reference condition for exergy analysis in buildings for HVAC applications [107].

In our study the same definition is used while each room in a building is considered

as a control volume. The following equation governs the exergy balance for a control

volume with thermodynamic exergy destruction [108]:

Ẋr
desti

=

ẊH.T.,r
i︷ ︸︸ ︷∑

k∈Nr
i

(1− T0

T ri
)Q̇i

H.T.,k−Ẇ r
i +

∑
in

ṁr
iψ −

∑
out

ṁr
iψ −

dXr
i

dt

(3.6)

where the rate of exergy destruction in ith room is shown by Ẋr
desti

. This term denotes

the loss in work potential due to irreversibility such as air mixing and heat transfer.

T0 is the reference air temperature and Q̇i
H.T.,k is the rate of heat transfer to room i.

Rate of exergy transfer by work is shown by Ẇ r
i and is equal to zero for our system

since there is no associated work in room i. ψ shows the amount of exergy associated
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with flow. dXr
i

dt
represents the rate of change of exergy of the room i.

Whenever there is a temperature change, exergy destruction is inevitable. Unlike

energy which is never destroyed during a process, exergy is not a conserved prop-

erty [72]. Rate of exergy destruction (Ẋdest) is proportional to irreversible entropy

production inside the control volume. Total exergy transfer by the heat transfer is

represented by ẊH.T.,r
i in equation (3.6). This term is a function of different factors

including the building type, insulation level and temperature difference between room

i and surrounding zones. The third and the fourth terms of right hand side of equa-

tion (3.6) present flow exergy transfered in and out of the room, respectively. Exergy

change due to heat transfer can be rewritten in the following terms:

ẊH.T.,r
i =

∑
j∈Nr

i

(1− T0

T ri
)(
T rj − T ri
Rw
i,j

) (3.7)

Total exergy of a flowing fluid in a control volume is the sum of exergies of its kinetic

energy, potential energy and enthalpy. The following equation shows the unit-mass

form of this equality:

ψ = (h− h0)− T0(s− s0) + V 2

2 + gz (3.8)

in which h and h0 indicate enthalpy and dead-state enthalpy of the fluid. s and s0
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show fluid entropy and dead-state entropy. Specific kinetic energy of fluid and specific

gravitational potential energy are represented by V 2

2 and gz, respectively. Changes

in kinetic and gravitational energy of the supply air are neglected in this study due

to insignificant values. Rate of change of exergy inside room i based on change in

enthalpy and entropy is demonstrated in the following equation:

Xr
i =mroom

i [(h− h0)− T0(s− s0)]⇒

dXr
i

dt
=mroom

i (dh
dt
− T0

ds

dt
) + dmroom

i

dt
[(h− h0)− T0(s− s0)]

(3.9)

where mroom
i is mass of the air inside room i. Ideal gas assumption is considered for

change in enthalpy and entropy due to the compressibility factor being close to one

(very low pressure of the air). We neglect change of mass of the air inside room in

equation (3.9), thus we assume dmroom
i

dt
is equal to zero. Hence, the only remaining

term of the equation (3.9) is the first term. The following equation expresses the

entropy change (∆s) and the enthalpy change (∆h) of air:

∆h =
∫ 2

1
cpavgdT ⇒ h2 − h1 = cpavg(T2 − T1) (3.10)
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∆s =
∫ 2

1
cvavg

dT

T
+R · lnv2

v1
⇒ s2 − s1 = cvavg · ln

T2

T1
+R · lnv2

v1
(3.11)

where cvavg is average specific heat capacity at constant volume and cpavg is average

specific heat capacity at constant pressure, respectively. In equations (3.10) and

(3.11), cpavg and cvavg values are found for the average of air temperature range studied.

R and v show gas constant and specific volume, respectively. T si is considered entrance

temperature of supply air into room i, while T ri is the exit temperature in the control

volume. By plugging in equations (3.7), (3.8), (3.9), (3.10), and (3.11) into

equation (3.6) and discretizing the consequent equation with sampling time of Tsample

the following equation is concluded:

Ẋr
desti [k] =

∑
j∈Nr

i

(1− T0[k]
T ri [k] )(

T rj [k]− T ri [k]
Rwi,j

) + ṁr
i [k]{cpavg (T si [k]− T ri [k])− T0[k]cvavg ln(T

s
i [k]
T ri [k] )}

+ mroom
i

Tsample
{cpavg (T ri [k]− T ri [k − 1])− T0[k]cvavg ln T ri [k]

T ri [k − 1]}

(3.12)

where [k] indicates index of time step. Equation (3.12) expresses the exergy destruc-

tion at each time step based on the outside air temperature, mass flow rate, supply

air temperature and zone temperature. In Fig. 3.5 exergy destruction for one week is
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shown based on measured temperature data. The supply air temperature and exergy

destruction profile show a similar pattern. At the beginning of a day, the rate of

exergy destruction rises when supply air temperature increases.
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Figure 3.5: Exergy destruction over one week based on recorded data for
existing HVAC control system. (a) shows room and supply air temperature
and (b) shows corresponding rate of exergy destruction inside the control
volume (i.e., room).

3.4 Controller Design

Two model predictive controllers based on exergy objective and energy objective are

formulated. These predictive controllers are compared with a conventional rule-based
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on-off controller to evaluate their performance. In order to have a fair comparison,

time step is considered to be ∆t = 1 hour for all controllers and the room temperature

constraints are set based on ASHRAE Standard 62.1-2004 [66].

3.4.1 Rule-Based Control (RBC)

The rule-based controller in our building testbed turns off the heat-pump compressor

when room temperature is within the pre-defined comfort level. When the zone

temperature goes beyond lower-bound or upper-bound comfort level temperature,

the controller keeps the heat-pump running for the duration of time step (∆t). Then,

the controller checks the room air temperature again and determine whether the zone

temperature is within the comfort level, and keeps the heat-pump on if the room

air temperature is still beyond the bounds. In summer, the heat-pumps work in a

reverse mode (cooling mode) and remove heat from the zones and reject it to the

environment. The experimental data presented in this chapter is collected during

winter only.
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3.4.2 Energy-Based Model Predictive Control (EMPC)

We use the energy index, Ie, defined in [106] to minimize energy consumption in

HVAC systems. Ie in (kWh) is defined as function of all HVAC loads in a building:

Ie =
24∑
t=1

[Pc(t) + Ph(t) + Pf (t)] ∆t (3.13)

where cooling power Pc, heating power Ph and fan power Pf are determined by:

Pc(t) = ṁr
i (t)cpavg [T ri (t)− Tc(t)] (3.14a)

Ph(t) = ṁr
i (t)cpavg [Th(t)− T ri (t)] (3.14b)

Pf (t) = κ(ṁr
i )3 (3.14c)

where Tc and Th are the supply air temperatures in the cooling mode and the heating

mode, respectively. Equations (3.14a) and (3.14b) define the relationship between

the supply air temperature (Th or Tc) and the heat-pump power consumption in the

heating mode and the cooling mode, respectively. κ [W.s3.kg−3] is the fan coefficient

which expresses the cubic relation between power consumption and mass flow rate

(ṁr
i ). Since air mass flow has a constant value and is not a control input in the

state space model, fan power (Pf ) is not considered in the energy cost function. We

formulate an MPC problem to minimize Ie. Hence, the controller minimizes the
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required energy while keeping the room temperature within the comfort zone. We

use the objective function in equation (3.15a) to minimize energy usage with low

computational requirements. In addition, soft constraints denoted by ε in equation

(3.15), are formulated to guarantee optimal problem feasibility at all times. The

following optimization problem is being solved at each time step t:

min
Ut,ε̄,ε
{|Ie|1 + ρen(|εt|1 + |εt|1)} (3.15a)

subject to:

xt+k+1|t = Axt+k|t +But+k|t + Edt+k|t (3.15b)

yt+k|t = Cxt+k|t (3.15c)

U t+k|t ≤ ut+k|t ≤ U (3.15d)

δU ≤ ut+k+1|t − ut+k|t ≤ δU (3.15e)

T t+k|t − εt+k|t ≤ yt+k|t ≤ T t+k|t + εt+k|t (3.15f)

εt+k|t, εt+k|t ≥ 0 (3.15g)

where (3.15b) and (3.15c) is building state equation model. Input constraints on

supply air temperature are shown in (3.15d) and (3.15e), and (3.15f) denotes out-

put constraint on room air temperature and (3.15g) is the constraint on slack vari-

ables. Constraints (3.15b) and (3.15d) must hold for all k = 0, 1, ..., N − 1 and
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constraints (3.15c), (3.15e), (3.15f), and (3.15g) must hold for all k = 1, 2, ..., N .

Ut = [ut|t, ut+1|t, · · · , ut+N−1|t] denotes vector of control inputs, εt = [εt+1|t, · · · , εt+N |t]

and εt = [εt+1|t, · · · , εt+N |t] are the slack variables vector. yt+k|t is thermal zone tem-

perature vector, the output of state model. dt+k|t denotes the disturbance vector, and

T t+k|t and T t+k|t for k = 1, · · · , N are the comfort bounds (lower and upper bounds)

on the zone temperature, respectively. U t+k|t and U denote the lower and upper limits

on the supply air temperature provided by the heat-pump, respectively. Since phys-

ical limit on maximum supply air temperature is not time varying, therefore time

invariant constraint U is used. δU and δU are limits on rate of change of supply air

temperature due to dynamics of heat-pump condenser. ρen is being used to consider

penalty on the comfort constraint violations for EMPC.

At each time step, the first entry of input vector, Ut, found by the optimization

problem is applied to the building model and moves the system forward to the next

time step. Then, the prediction time horizon, N , is shifted to form a new optimization

problem. The optimization process is repeated until covering the total time span of

interest. In order to find the optimal future inputs, weather prediction for the next 24

hours, schedule of the zone (temperature bounds), and the building energy model are

used. A schematic of model predictive control implementation is depicted in Fig. 3.6
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Figure 3.6: Structure of XMPC and EMPC.

3.4.3 Exergy-Based Model Predictive Control (XMPC)

An objective function based on exergy concept is constituted for XMPC problem.

Exergy destruction (Ẋdestt) from equation (3.12) is selected as the objective function.

In order to minimize Ẋdestt , we propose the objective function (3.16). For this purpose,

XMPC algorithm finds the optimum inputs (supply air temperature) to minimize the

irreversible entropy generation of the HVAC system and therefore increases the system

efficiency. The following equation expresses the XMPC objective function:

min
Ut,ε̄,ε
{Ẋdestt + ρex(|εt|1 + |εt|1)} (3.16)

The MPC problem is subjected to the same constraints on input and states as those

in equation (3.15). ρex is being used to consider penalty on the comfort constraint
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violations for XMPC problem. In equation (3.16), Ẋdestt is a nonlinear function and it

leads to a nonlinear model predictive control (NMPC) problem which is computation-

ally more expensive to solve compared to linear model predictive problem (LMPC)

in equation (3.15).

sectionResults and Discussion

To set up the optimization problem in MATLABr, YALMIP toolbox [109] is used.

YALMIP toolbox provides a convenient symbolic syntax to formulate the problem,

and then interfaces with an appropriate solver. Values of parameters and constants

for building model are presented in Appendix II. To analyze the XMPC algorithm, we

show the comparison between three controllers with respect to cumulative electrical

energy consumption and the exergy destruction rate in Fig. 3.7, 3.8 and 3.9. Subplot

(a) in Fig. 3.7 illustrates room air temperature profile and control input (i.e., supply

air temperature) for the rule-based controller (RBC). The RBC controller fails to meet

the temperature constraints at the beginning of the day (5-7 AM) since the controller

is not able to detect the upcoming changes in the room’s bound temperature (output

constraint) in advance. Subplot (b) of Fig. 3.7 depicts exergy destruction rate as well

as cumulative energy consumption. As shown in Fig. 3.7 the main exergy destruction

takes place between 6-8 AM when the demand for exergy (i.e., supply air) is maximum.

Having in mind that the EMPC can track the desired trajectory, it can satisfy the

temperature comfort bounds (Fig. 3.8 (a)). Subplot (b) of Fig. 3.8 determines that
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most of exergy destruction happens before 6 AM for EMPC. Fig. 3.9 illustrates the

exergy-based MPC (XMPC) results. XMPC starts to heat the zone earlier than

EMPC. Hence, maximum supply air temperature in XMPC is lower than EMPC and

definitely less than RBC because supplying air with higher temperature causes more

irreversiblity during heat transfer. A comparison between energy consumption and

exergy destruction for the three controllers is made in Table 1. The results confirm

that XMPC reduces exergy destruction of the zone, as well as decreasing the electrical

energy consumption. Exergy cost function (equation (3.12)) contains more system

efficiency related information compared to the energy cost function. Hence, exergy-

based cost function considers energy/exergy flow from heat pump, energy/exergy loss

due to heat transfer and rate of change of energy/exergy contained in the room.

This information helps XMPC to reduce irreversibilities (i.e., irreversible entropy

generation) which are sources of inefficiency in the HVAC operation.

Table 3.1
Performance comparison for three designed HVAC controllers.

Controller Cumulative Cumulative Reduction in Reduction in
type exergy destruction energy consumption exergy destruction energy consumption

[kWh] [kWh] [%]* [%]*
XMPC 2.7 4.2 22 36
EMPC 2.8 4.6 18 24
RBC 3.3 5.7 0 0

*Saving percentage is calculated by x−x0
x × 100, where x0 is the energy consumption or exergy

destruction of the RBC.

Fig. 3.10 represents irreversible entropy generation terms due heat transfer, mass

transfer and change in stored entropy of the heating zone in the course of one day.
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Figure 3.7: Performance of RBC with an update rate of ∆t = 1 hour. (a)
shows control input (i.e., supply air) and the room temperature profile, (b)
illustrates exergy destruction rate and also cumulative energy consumption.

Irreversible entropy generation due to heat transfer in XMPC and EMPC are almost

the same since outside temperature and the room air temperature are similar for both

controllers. As shown in the second plot of Fig. 3.10, entropy generation due to mass

transfer (supply air) for XMPC is less than EMPC. This happens since between hours

5-7 AM, XMPC controller supplies air with lower temperature and therefore results

in less exergy destruction (Eq. (3.8)). The third plot in Fig. 3.10 illustrates change in

the stored entropy of the room air. Since at the end of the day, room air temperature

in XMPC is slightly lower than EMPC case (see Fig. 3.8 and 3.9), therefore the

stored entropy in XMPC case is slightly less than EMPC case. Considering the
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Figure 3.8: Energy-based MPC (EMPC) results.

fact that irreversible entropy generation conveys similar information with exergy de-

struction, we can conclude that the system efficiency in XMPC is higher than EMPC.

The benefits and drawbacks of the proposed XMPC versus the conventional EMPC

and RBC can be summarized as follows:

Benefits of XMPC:

† Compared to RBC, we could achieve 22% reduction in exergy destruction and
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Figure 3.9: Exergy-based MPC (XMPC) results.

36% reduction in electrical energy consumption by HVAC system. XMPC op-

timizes the use of low quality energy (low exergy) for HVAC systems and hence

decreasing irreversible entropy generation. Thus, supply air temperature needs

to be close to the room temperature since large difference in supply air temper-

ature increases entropy generation (exergy destruction).

† XMPC consumes 12% less energy and saves 4% more exergy compared to

EMPC. By reducing energy loss and irreversibilities of energy/exergy flows into

the zones, heat transfer of zone and rate of change of energy/exergy contained

in the zone, XMPC offers more energy saving compared to conventional EMPC.
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Figure 3.10: Irreversiblee entropy generation for XMPC and EMPC con-
trollers. This figure shows three terms of entropy balance equation and
corresponding entropy generation for XMPC and EMPC controllers.

Drawbacks of XMPC:

† Implementation of XMPC requires to have an accurate exergy model for HVAC

system and exergy destruction model across the system components.
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† In the optimization framework, solving XMPC problem is computationally ex-

pensive due to nonlinearity of the objective function. However XMPC can still

run real-time (time step of 1 hour) due to slow thermal dynamics of rooms.

3.5 Summary and Conclusion

In this chapter we derived and formulated exergy destruction as a function of the

physical parameters of the building. An optimal control problem is formulated to

minimize exergy destruction rate. The beneficial new aspects of MPC problem based

on exergy is optimizing the use of low quality energy (low exergy) for HVAC sys-

tems and hence decreasing irreversible entropy generation. Our findings show that

the MPC controllers outperform the rule-based on-off controller for HVAC systems.

Compared to RBC, EMPC results in 18% and 24% reduction in exergy destruction

and energy consumption, respectively. XMPC enhances the results from EMPC by

offering 22% reduction in exergy destruction and 36% reduction in HVAC energy con-

sumption compared to RBC. Our results show the supremacy of XMPC compared

to conventional EMPC since it consumes 12% less energy and saves 4% more exergy.

The benefits from XMPC stem from reduction of sources of irreversible entropy gen-

erations by controlling the HVAC system variables that affect heat transfer, internal

entropy generation rate, and exergy flows into the zones.
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The implementation of the proposed XMPC is the same as conventional EMPC. The

only difference is the change in the objective function. Details for implementation of

conventional EMPC are extensively found in references [89, 90]. Future work includes

implementation of XMPC on a real building testbed.
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Chapter 4

Optimal Exergy-Based Control of

Internal Combustion Engines1

Exergy or availability is defined as the maximum useful work during a process. This

metric has been used to analyze and understand loss mechanisms of Internal Com-

bustion Engines (ICEs). In this chapter, an optimal control method based on exergy

is introduced for transient and steady state operation of ICEs. First, an exergy model

is developed for a single cylinder Ricardo engine. The ICE exergy model is based on

the Second Law of Thermodynamics (SLT) and characterizes irreversibilities. Such

quantifications are not identified in the First Law of Thermodynamics (FLT) analysis.

For steady-state operation of the ICE, a set of 175 different operating conditions is

1The material of this chapter has been submitted to Journal of Applied Energy [186] (APEN-D-16-
04078) with the granted permission in Appendix E.
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used to construct the SLT efficiency maps. Two different SLT efficiency maps are gen-

erated depending on the applications whether work, or Combined Power and Exhaust

Exergy (CPEX) is the desired output. To include transient ICE operation, a model

to predict exergy loss/destruction during engine transients is developed. The sources

of exergy destruction/loss are identified for a Homogeneous Charge Compression Ig-

nition (HCCI) engine. Based on the engine operating conditions (i.e., steady-state or

transient) SLT efficiency contour maps or predicted exergy losses are determined at

every given engine load. An optimization algorithm is proposed to find the optimum

combustion phasing to maximize the SLT efficiency. Application of the optimization

algorithm is illustrated for combustion phasing control. The results show that using

the exergy-based optimal control strategy leads to an average of 6.7% fuel saving and

8.3% exergy saving compared to commonly used FLT based combustion control in

which a fixed combustion phasing (e.g., 8◦aTDC) is used.

4.1 Introduction

The First Law of Thermodynamics (FLT) deals with energy conservation whereas

the Second Law of Thermodynamics concerns about entropy production and irre-

versibilities in processes which cause deficiency. SLT states that energy has quality

in addition to its quantity. Exergy or availability is the portion of energy that can do

work in a specific environment. Exergy is based on FLT and SLT and determines the
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ability of a system to do work in a specific environment [71]. Exergy can be destroyed

through irreversible processes including combustion, heat transfer, friction and mix-

ing in Internal Combustion Engines (ICEs), unlike energy which is not created nor

destroyed. Irreversibilities lead to the loss of work potential during a process. For

instance, exergy destruction of the combustion process in ICEs reduces the fuel po-

tential to do mechanical work. Thus, identification of sources of exergy destruction in

an ICE is crucial to enhance the engine performance and efficiency. SLT characterizes

and quantifies the sources of irreversibility and exergy loss in ICEs.

FLT analysis does not recognize irreversibilities across systems’ components, thus it

provides limited insight for ICE optimal control. A large number of studies [7, 8,

110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120] have analyzed SLT in ICEs.

Figure 4.1 illustrates a summary of the ICE studies in the literature based on the

exergy and SLT. As shown in Figure 4.1, depending on the use of exergy in ICEs,

studies can be categorized into three main groups: (i) system analysis, (ii) design

optimization, and (iii) controls. The first group consists of exergy analysis for (a)

whole engine [7, 8, 110, 111], (b) combustion phasing [112, 113], (c) closed engine

cycle [114, 115, 116, 119], (d) combustion process [117, 121, 122], and (e) exhaust

heat recovery [123, 124, 125]. For instance in [7], application of the SLT and its

equations have been provided for different types of internal combustion engines and

their subsystems (e.g., turbocharger, inlet and exhaust manifolds). Exergy analysis of

a gasoline-fueled Homogeneous Charge Compression Ignition (HCCI) engine has been
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studied in [112]. According to the results in [112], the main exergy loss mechanism

is combustion, which accounts for 19-23% of total exergy loss. The other exergy loss

mechanisms including heat loss, exhaust gases, and Unburnt Hydrocarbons (UHC)

are responsible for 5-15%, 12-20%, and 1%, respectively [112].

Figure 4.1: Research background of SLT and exergy studies in ICEs.

Studies in the second group (design optimization), concentrate on how to improve
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the design of ICEs and related subsystems based on exergy metric [118, 121, 123].

In [121], a Reformed Molecule HCCI (RM-HCCI) method is introduced. The results

in [121], show that simpler fuel molecules cause less combustion irreversibility. Thus,

reforming hydrocarbon fuels into small molecules under a specific condition leads to

a higher SLT efficiency.

The third group in Figure 4.1 centers on the usage of exergy and SLT for control

of ICEs. While exergy-based control has been studied before for different appli-

cations [2, 102, 103] like Heating, Ventilation and Air conditioning (HVAC) with

promising results by the authors of this chapter [2, 103], there are only few studies

undertaken for exergy-based control of ICEs. In [3], we designed a control algorithm

to find optimum combustion phasing based on exergy for steady state operation of

engines. This chapter will present how to use exergy insight in control of ICEs for

both steady-state and transient operations. In this chapter, experimental SLT maps

and predicted exergy loss/destruction are based on physical models.

In different types of ICEs, combustion phasing is a commonly-used control variable

since output power, engine-out emissions, combustion cyclic variations, and exhaust

gas temperature are dependent on the combustion phasing [6]. Different control

actuators have been used to adjust combustion phasing. For example, in conven-

tional Compression Ignition (CI) engines, the fuel injection timing and number of
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in-cylinder injections are used for combustion phasing control while in Spark Igni-

tion (SI) engines, timing of spark ignition is used to control combustion phasing. In

HCCI, since there is no direct means to initiate the combustion, combustion phas-

ing is controlled by adjusting the charge properties including temperature, pressure

and fuel-air concentrations [126, 127]. For HCCI combustion phasing control, dif-

ferent control actuators including dual fuel ratio adjustment [128, 129], intake air

temperature adjustment [130] and Variable Valve Actuation (VVA) [131] have been

used. In this chapter, an exergy-based optimal control method is introduced to adjust

combustion phasing in ICEs.

Based on the application, the desired output of an ICE can be either power or Com-

bined Power and Exhaust Exergy (CPEX). By minimizing exergy losses or maxi-

mizing SLT efficiency, the desired output exergy is increased. Exhaust exergy can

be used in both stationary and mobile applications of energy systems. For exam-

ple, turbochargers use exhaust exergy to boost the intake air pressure that leads to

improve the automotive engine efficiency. Similarly, exhaust exergy is recovered in

Combined Heat and Power (CHP) systems. In [124] exergy recovery for an CI engine

is studied and authors experimentally showed that by recovering exhaust exergy, the

Brake Specific Fuel Consumption (BSFC) decreases by 10%. In [123] exhaust exergy

recovery is studied for an ICE by using a Thermo-Electric Generator (TEG). Results

in [123] show 5.2% increase in the effective thermal efficiency of the ICE.
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Low Temperature Combustion (LTC) mode, compared to conventional SI or CI

modes, leads to higher exergy efficiency [112]. In this chapter, we focus on HCCI

which is a well-recognized LTC mode for ICEs. In this study, we use SLT efficiency

as an accurate metric for engine control. An exergy model for a single cylinder HCCI

engine is constructed. A crank angle resolved exergy analysis for a single-zone model

is first conducted. Then, the SLT efficiency contour maps are generated based on 175

experimental data points for steady-state operation. A physical model is designed to

predict instantaneous in-cylinder pressure, Start of Combustion (SOC), and CA50, i.e.

the crank angle where 50% of the fuel mass is burnt. The predicted pressure trace

is used to calculate exergy loss/destruction of different transient operating points.

An optimization algorithm is formulated based on exergy to determine the optimum

combustion phasing at every given engine load for transient and steady-state modes.

Then, an algorithm for Exergy-based Control of ICE (XCICE) is developed. The new

exergy-based control approach is illustrated by tracking the optimum CA50. CA50 is

used in this study since it is a robust feedback indicator of HCCI combustion phasing

due to the steep heat release in the main stage of HCCI combustion [132].

The chapter is organized as follows. Section 2 describes the engine type and the

experimental data used in this chapter. In Section 3, exergy model of the ICE is

introduced. Crank-angle resolved exergy analysis is presented in Section 4. In Section

5, SLT efficiency maps are illustrated. An exergy-based optimal combustion phasing

algorithm is introduced in Section 6, followed by the engine control oriented model.

105



XCICE is presented in Section 8 and optimization results are shown in Section 9.

Finally summary and conclusion are drawn in Section 10.

4.2 Engine Experimental Data

In this section, the experimental data from [6] for a single cylinder Ricardo HCCI

engine at 175 different operating conditions are used. The specifications of the HCCI

engine are listed in Table 4.1. This HCCI engine is a blended fuel engine using two

Primary Reference Fuels (PRFs): n-Heptane with octane number (ON) of 0 (PRF0)

and iso-Octane with ON of 100 (PRF100). The fuels are injected and pre-mixed with

air in the intake manifold. More details about the operation of this engine and the

experimental setup used for collecting the engine data are found in [6].

Table 4.1
Specifications of the single cylinder Ricardo HCCI engine.

Parameter Value
Bore 80 mm
Stroke 88.90 mm
Compression Ratio (CR) 10 : 1
Displacement volume (Vd) 447 cc
Number of valves 4
Intake valve opening (IVO) −175 ◦ aBDC∗
Intake valve closing (IVC) +55 ◦ aBDC
Exhaust valve opening (EVO) −70 ◦ aBDC
Exhaust valve closing (EVC) −175 ◦ aBDC

*After bottom dead center.
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Figure 4.2 shows the engine operating range in this study. As seen in Figure 4.2,

the data represents a wide range of operation from naturally aspirated to boosted

conditions with ultra lean or lean air-fuel mixtures.
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Figure 4.2: Engine operating range for 175 steady-state data-points with-
out external Exhaust Gas Recirculation (EGR). The engine experimental
data is taken from [6]. (a) Intake manifold pressure (Pman), (b) intake man-
ifold temperature (Tman), and (c) engine speed (N).

Figure 4.3 shows the exhaust gas temperature (Texh) contour map for different engine

loads (Indicated Mean Effective Pressure, IMEP) for the 175 points in this study. For
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these measurements the exhaust gas temperature sensor was located at the exhaust

port. The data points in this contour map are the same as those in the SLT contour

maps which will be shown later in the chapter. In Figure 4.3, misfire and knock limits

are shown for the studied engine operating range. Too delayed combustion phasing

(i.e., CA50) at low loads causes misfire while knocking occurs at higher loads with too

early CA50s. The top right region in Figure 4.3 shows the region that higher engine

loads can be obtained once dilution is used, e.g., by using Exhaust Gas Recirculation

(EGR). No EGR is used in this study.

IMEP (bar)
4 4.5 5 5.5 6 6.5

C
A

50
 (C

A
D

aT
D

C
)

2

4

6

8

10

12

14

16

18

20
Texh Map (K)

Data point

560

580

600

620

640

660

680
Misfire

Knock

Texh (K)

Figure 4.3: Exhaust gas temperature (Texh) contour map with the distri-
bution of the experimental data points in this study.
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4.3 Engine Exergy Model

4.3.1 Dead-State Condition

The potential of a system to deliver work is defined with respect to a reference point

that is called dead-state condition. In this study, restricted dead-state is used and de-

noted by asterisk subscript (‘∗’). The restricted dead-state is defined as the condition

when a system is at the same temperature and pressure with its reference environment

(i.e., T0 = 298.15 K and P0 = 101.325 kPa) [7]; However, in the restricted dead-state,

the chemical composition (e.g., molar mass of substances) may differ from the envi-

ronment. Actual dead-state (or true dead-state) condition is the condition in which

the system or mixture is in thermo-mechanical equilibrium and has chemical compo-

sition similar to that of the reference point (i.e., 75.67% N2, 20.35% O2, 3.03% H2O,

0.03% CO2, and 0.92% for other substances) [7]. In this chapter, to calculate the

exergy flow of the processes during the engine operation, P0, T0 and dead-state air

chemical molecular composition are used.

4.3.2 Exergy Balance

The following equation governs the exergy balance for an ICE cylinder:
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XFuel +XPhys,in =

XWork +XExh + (Xd,Comb +XHT +Xd,Fric)︸ ︷︷ ︸
Xd

+XUHC +XBlow−by +Xd,Mix︸ ︷︷ ︸
XOthers

(4.1)

where XFuel is fuel exergy at Intake Valve Closing (IVC) moment. Physical exergy of

the mixture at IVC is denoted with XPhys,in and is calculated by using Eq. (4.2a) by

knowing temperature and pressure at IVC moment. XWork is the exergy transferred

by work and the exhaust physical exergy is shown by XExh. Xd,Comb, XHT and Xd,Fric

are exergy destruction due to combustion, exergy loss due to heat transfer, and exergy

destruction due to friction, respectively. Exergy loss corresponding to UHC is shown

with XUHC . To calculate XUHC , the measured UHC data from emission analyzer is

used in this chapter [6]. XBlow−by denotes exergy losses due to blow-by gases. Xd,Mix

is the exergy destruction due to mixing. When two or more streams with different

thermodynamic properties and chemical compositions mix, irreversible entropy is

produced and exergy is destructed. The summation of other irrevrsibilities, Xd,Mix

and exergy losses including XUHC , and XBlow−by is denoted by XOthers term in this

chapter.

Flow of exergy in an engine is divided into two parts: physical and chemical. Phys-

ical exergy is related to the mixture’s pressure and temperature. The difference in

chemical composition of species with the reference environment compositions results

in chemical exergy. Physical and chemical exergies of a system are determined by the
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following equation [112]:

xPhys = (u− u∗) + P0(v − v∗)− T0(s− s∗) (4.2a)

xChem = µ∗ − µ0 (4.2b)

where xPhys and xChem denote physical and chemical exergies of a system, respectively.

Specific internal energy, the specific volume and specific entropy are denoted by u, v

and s, respectively. µ is the specific chemical potential in (4.2b), and is calculated by

using Eq. (4.3):

µ∗ = h∗ − T0 s∗ (4.3a)

µ0 = h0 − T0 s0 (4.3b)

where specific enthalpy of the in-cylinder mixture is shown by h. Total specific exergy

of a system (xtotal) is defined as the summation of specific physical and chemical

exergies [7]:

xtotal = xPhys + xChem (4.4)

111



The thermodynamic properties (in Eq. (4.2) and Eq. (4.3)) for mixture species are

dependent on in-cylinder gas temperature. Ideal gas law is used to calculate in-

cylinder gas temperature. In order to calculate the thermodynamic properties in

various conditions, NASA Polynomials [133] are used. NASA Polynomials include

seven coefficients for species with temperatures less than 1000 K and seven constant

coefficients for gases with the temperatures between 1000 K and 6000 K [133].

cp
Ru

= a1 + a2T + a3T
2 + a4T

3 + a5T
4 (4.5a)

H

RuT
= a1 + a2

T

2 + a3
T 2

3 + a4
T 3

4 + a5
T 4

5 + a6

T
(4.5b)

S

Ru

= a1lnT + a2T + a3
T 2

2 + a4
T 3

3 + a5
T 4

4 + a7 (4.5c)

where a1, a2, a3, a4, a5, a6, a7 are the polynomial coefficients [133]. cp and Ru are the

specific heat at constant pressure and the universal gas constant, respectively. H and

S are enthalpy and entropy of in-cylinder species, respectively.

4.3.2.1 Indicated Work Exergy

Eq. (4.6) is used to calculate the rate of exergy transfer by work in the ICE. XWork

in Eq. (4.1) is gross indicated work which is calculated by taking integral of Eq. (4.6)
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between IVC to EVO moments.

dXW

dθ
= (P − P0)dV

dθ
(4.6)

where P is the in-cylinder pressure and θ is the crank angle degree (CAD). V is the

instantaneous volume of cylinder. The crank-slider mechanism formulation from [134]

is used to calculate V .

4.3.2.2 Exhaust Exergy

Eq. (4.2a) is used to calculate exhaust exergy between EVO and EVC moments.

The exhaust exergy, XExh, is calculated by knowing the specific internal energy,

volume and entropy of exhaust gas. For steady-state operation of ICE, experimentally

measured pressure and temperature are used to find the thermodynamic properties

of exhaust gases. For transient operation of ICE, pressure and Temperature at EVO

are estimated using the in-cylinder pressure model explained in Section 4.3.5.

113



4.3.2.3 Combustion Irreversibility

Any process in an ICE that involves temperature change, destructs exergy (i.e., work

potential loss). Up to 25% of the fuel exergy is wasted during combustion process [112]

which is the largest portion of exergy loss/destruction in a conventional ICE. The

factors that affect combustion irreversibilities include: (1) fuel-air equivalence ratio,

φ, (2) EGR rate, (3) fuel molecule complexity, and (4) inlet oxygen concentration [121,

135]. For instance, by increasing φ values, the exergy destruction of combustion

process decreases due to higher mixture temperature [112]. The following equation is

used to calculate combustion irreversibility [7]:

dXd,Comb = −T0

T

∑
i

(µidmi) (4.7)

where the differential of the exergy destruction due to combustion is denoted by

dXd,Comb. µi in Eq. (4.7) for fuel is equal to xFuel and for other mixture species

is considered to be specific Gibbs free enthalpy. As seen in Eq. (4.7), the combus-

tion irreversibility depends on the in-cylinder mixture temperature, species type and

changes in species mass (dmi) that is controlled by the chemical reaction rates.
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4.3.2.4 Exergy loss due to heat transfer

In engine operation, exergy is lost due to heat transfer between in-cylinder mixture

and cylinder wall. XHT in Eq. (4.1) is calculated by:

dXHT

dθ
= (1− To

T
)dQL

dθ
(4.8)

where dXHT

dθ
denotes the rate of exergy loss due to heat transfer and (1 − To

T
) is the

Carnot cycle efficiency. To calculate the heat transfer rate (denoted by dQL

dθ
) in

Eq. (4.8), modified Woschni correlation from [136] is used for the HCCI engine.

4.3.2.5 Friction

Chen & Flynn correlation [134] is used to estimate Friction Mean Effective Pressure

(FMEP) for the engine in this chapter. Eq. (4.9) governs the exergy destruction due

to friction [134].

FMEP = c1 + c2Pmax + c3Up + c4U
2
p (4.9a)

Xd,Fric = FMEP × Vd (4.9b)
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Where Pmax is the maximum cylinder pressure. Vd and Up denote the engine dis-

placement volume and the mean piston speed, respectively. The constants in (4.9a)

(c1, c2, c3 and c4) are determined based on engine experimental data. In this study,

the experimental data of whole engine FMEP from [137] was used.

The contour map of Xd (i.e., combined exergy destruction and exergy loss) with

respect to the engine load (IMEP) and the combustion phasing (CA50) is shown in

Fig. 4.4. As expected, more exergy destruction is observed during high engine load

operations, since more fuel is burnt, compared to fuel burnt at lower loads. A proper

selection of CA50 can reduce the amount of exergy Xd at each engine load. As seen

in Figure 4.4, too early combustion (e.g., CA50 ≤ 4 CADaTDC) have higher Xd.

4.3.2.6 Fuel Exergy

Liquid hydrocarbon fuels for ICEs have a general structure of CcHh. Eq. (4.10)

determines the approximate chemical exergy of hydrocarbon fuels based on the fuel

Lower Heating Value (LHV) [138].

xFuel = (1.04224 + 0.011925h
c
− 0.042

c
)× LHV (4.10)
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Figure 4.4: Combined exergy destruction and exergy loss (Xd) contour
map. This map is generated using the data points from Fig. 4.2 and Fig. 4.3
and the exergy model in this study.

Where xFuel denotes the specific chemical exergy of the fuel. The ratio of fuel exergy to

LHV (xF uel

LHV
) which indicates the value of chemical exergy to chemical energy depends

on the hydrocarbon type. This ratio for n-Heptane (C7H16) and iso-Octane (C8H18)

are 1.06350 and 1.06382, respectively.
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4.3.3 Chemical Reaction

A single-zone combustion model is used in this work which is intended for control

applications. The global chemical reaction for burning the blends of n-Heptane and

iso-Octane is:

(1−ON100 )C7H16 + (ON100 )C8H18 + (11 + 3
2
ON

100 )(O2 + 3.76N2)⇒

(ON100 + 7)CO2 + (ON100 + 8)H2O + 3.76(3
2
ON

100 + 11)N2

(4.11)

Stoichiometric air to fuel ratio (AFR) is denoted by AFRStoich. and is determined by

Eq. (4.12):

AFRStoich. =
(11 + 3

2
ON
100 )× 4.76×MWa

(1− ON
100 )×MWn−Hep + (ON100 )×MWiso−Oct

(4.12)

where MWa, MWn−Hep and MWiso−Oct are the molecular weights of air, n-Heptane

and iso-Octane, respectively.
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4.3.4 Second Law of Thermodynamics Efficiency

The SLT efficiency is the ratio of the desired output exergy to the consumed exergy.

For each application, the desired output is defined. If the resulting shaft work from

in-cylinder mixture combustion is the desired output, the SLT efficiency is defined

as [7]:

ηII,W = XW

XFuel +XPhys,in

(4.13)

where ηII,W is the SLT efficiency when work is the desired output. Physical exergy of

in-cylinder mixture at IVC, XPhys,in, is very small compared to XFuel; thus, XPhys,in

is neglected in some studies [7]. Since XPhys,in is negligible compared to XFuel, value

of ηII,W is close to gross indicated thermal efficiency of the engine cycle (ηI).

In other applications, Combined Power and Exhaust Exergy (CPEX) is the desired

output. For instance, in boosted engines, the exhaust exergy is used in turbochargers

in order to increase the intake manifold pressure. Using exergy of exhaust gas in a

turbocharger leads to a higher indicated engine work [134]. Another example includes

Combined Heat and Power (CHP) systems in which exhaust exergy of ICE is used for

heating applications. In addition, Thermoelectric Generator (TEG) uses the exhaust

exergy to generate electricity; however, one should never sacrifice in-cylinder exergy
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work for increasing the exhaust exergy, when work exergy is the desired output since

efficiency of exhaust recovery systems are low.

Eq. (4.14) determines the SLT efficiency of CPEX systems [7]:

ηII,CPEX = XW +XExh

XFuel +XPhys,in

(4.14)

where XExh is the average of the physical exergy of exhaust gases.

4.3.5 In-cylinder Pressure Model

There are many factors that affect in-cylinder pressure trace in an ICE. These factors

include engine geometrical parameters, heat-release rate, intake manifold pressure

and temperature (Pman and Tman), EGR, φ, etc. In this chapter, an experimentally

validated physics-based model is used to predict Start of Combustion (SOC) and

End of Combustion (EOC) [128]. By knowing PSOC and PEOC , we are able to predict

the closed-cycle in-cylinder pressure trace. The closed-cycle pressure can be divided

into three parts: (1) IVC to SOC, (2) SOC to EOC, and (3) EOC to EVO. A poly-

tropic compression process is assumed to estimate the pressure trace between IVC

to SOC [134]. To estimate pressure during combustion (SOC to EOC) heat-release

which is determined based on fuel mass fraction burned (MFB) is used. To this end,
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the modified Wiebe function is used to calculate MFB [126]:

MFB(θ) = 1− exp
− a

θ − SOC
θd

b (4.15)

where a and b are the parameters of the Wiebe function, and θd denotes the combus-

tion duration as a function of EGR rate and φ. Combustion duration is calculated

by using the following equation [126]:

θd = c(1 + EGR)dφe (4.16)

where c, d and e are constant values. CA50 is the crank-angle by which 50% of the

fuel mass is burnt (i.e., MFB = 0.5).

To estimate the pressure between EOC and EVO a polytropic assumption is

used [134]. The predicted pressure trace will be used to calculate exergy losses/de-

structions during an engine cycle. Fig. 4.5 demonstrates pressure trace validation for

four different ICE conditions. The results show a good agreement between predicted

and measured pressure trace.

The predicted in-cylinder pressure model can be used to predict exergy destruc-

tion/losses for different engine conditions. If in-cylinder pressure sensors are available

in the engine, the predicted pressure trace values can be replaced by real in-cylinder
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pressure measurements. In this study, measured in-cylinder pressure (PCyl) data is

used for exergy analysis of 175 steady-state experimental data. The in-cylinder pres-

sure model is used for predicting PCyl for the conditions that measured data is not

available to us, particularly during engine transients.
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Figure 4.5: Experimental validation of predicted in-cylinder gas pressure
for four different engine operating conditions. (a) φ=0.40, N=1016 RPM,
Pman=100 kPa, Tman=393 K, (b) φ=0.50, N=1016 RPM, Pman=100 kPa,
Tman=393 K, (c) φ=0.36, N=900 RPM, Pman=110 kPa, Tman=364 K, (d)
φ=0.41, N=900 RPM, Pman=110 kPa, Tman=366 K.
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4.4 Crank-Angle Resolved Exergy Analysis

Measured in-cylinder pressure data [6] with 0.1 CAD resolution is used to analyze

exergy change from IVC to EVO. The pressure trace data is used to calculate the

engine exergy loss/destruction and exergy transfer by work for the engine conditions

shown in Figures 4.2 and 4.3. Ideal gas assumption is used to calculate the in-cylinder

mixture temperature. Fig. 4.6 shows a crank-angle resolved exergy analysis of the

cylinder for an arbitrary operating point using engine cylinder as the control volume.

Negative values in Fig. 4.6 show that the exergy of cylinder is lost or destructed.

Fig. 4.6 (a) shows the rate of indicated work using Eq. (4.6). Fig. 4.6 (b) demon-

strates combustion irreversibility rate using Eq. (4.7) and the rate of exergy loss due

to heat-transfer using Eq. (4.8). As seen in Fig. 4.6 (b), heat-loss rate increases

during compression which results in mixture temperature rise. After SOC moment,

combustion irreversibility rate and heat-loss rate increase considerably. At the end

of combustion phase, EOC moment, the rate of combustion irreversibility becomes

zero and the rate of exergy loss due to heat-transfer slowly decreases since mixture

temperature decreases gradually. Fig. 4.6 (c) shows the cumulation of Fig. 4.6 (a)

and (b) which shows the exergy destruction/loss and exergy transfer during the closed

cycle (i.e., IVC to EVO). Air and fuel mass flow rates are obtained from the experi-

mental measurements in [6]. Eq. (4.10) is used to calculate fuel exergy (XFuel) which

is converted to XW , XExh and Xd during the four strokes of the ICE.
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Figure 4.6: Crank-angle resolved exergy flow for an arbitrary engine cycle.
(a) exergy work rate in the engine cycle, (b) exergy destruction rate due to
combustion and exergy loss rate due to heat transfer through the cylinder
walls, (c) cumulative exergy flow for the closed engine cycle. [Operating
condition: φ = 0.45, N = 810 RPM, ON = 0, Pman = 101 kPa, Tman =
365 K, EGR = 0%]

Fig. 4.7 shows the breakdown of energy and exergy distribution for the same operating

point shown in Fig. 4.6. The percentages of indicated work, heat loss, and exhaust gas

energy and exergy are shown in Fig. 4.7. In addition to these terms, for the exergy

distribution, friction, combustion irreversibility, and other exergy losses including
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blow-by gases, UHC, and mixing are shown. Due to 6.4% difference between fuel

LHV and specific exergy (see Eq. (4.10)), the values of work in exergy and energy

breakdown are not equal [7, 8]. As seen in Fig. 4.7, there is a difference between heat

loss values in energy and exergy breakdown. The reason for this difference is that

only 70% of the transferred heat (i.e., energy) can do work (i.e., exergy) and the rest

of energy which is 30% of the transferred energy by heat, does not have potential to

do work. In the same way, exhaust gases account for 43% of the fuel energy but only

16% of fuel exergy.

As seen in Fig. 4.7, the exergy destruction due to combustion is the main source of

exergy loss accounting for more than 40% of the total exergy loss. In this operating

point, 5% of fuel exergy is destroyed due to friction. Exergy losses due to blow-by,

and, UHC and exergy destruction due to mixing of air-fuel charge and residual gases

are shown in a category shown by ‘Other irreversibilities’ in Fig. 4.7 that account

for 9% of fuel exergy loss. ηIIW
and ηIICP EX

are 38% and 55%, respectively for the

operating point shown in Fig. 4.7.

4.5 SLT Contour Maps

Based on Equations (4.13) and (4.14) and using the ICE experimental data shown

in Figs. 4.2 and 4.3, two different SLT efficiency contour maps are generated. These

125



Figure 4.7: Energy and exergy breakdown for the engine cycle in Fig. 4.6.
Note: Since exergy of n-Heptane fuel is 6.4% more than its LHV [7, 8], the
work percentages are different; however, in both energy and exergy break-
downs, the values of indicated work are identical.

maps are used to find the optimum combustion phasing for steady-state operation of

the engine.

Fig. 4.8 shows the SLT contour map (ηII,W ) as a function of combustion phasing

(CA50) and engine load (IMEP). Fig. 4.9 shows the SLT efficiency (ηII,CPEX) map

for CPEX based on Eq. (4.14).
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Figure 4.8: The SLT efficiency map (ηIIW
) with respect to the engine

load (IMEP) and combustion phasing (CA50) along with the optimal CA50
trajectory.

4.6 Exergy-Based Optimal Combustion Phasing

(XOCP)

In this section, an optimization algorithm is introduced to determine optimum com-

bustion phasing trajectories for given engine load sweeps. This algorithm is based on

the SLT maps and will be used for steady-state operation of the ICE in this chapter.

CA50OPT trajectories are based on the contour maps of ηII,W and ηII,CPEX (Figs. 4.8

and 4.9). Fig. 4.10 demonstrates the details of the proposed Exergy-based Optimal
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Figure 4.9: The SLT efficiency map for CPEX (ηIICP EX
) with respect to

IMEP and CA50 along with the optimal CA50 trajectory.

Combustion Phasing (XOCP) algorithm. Desired IMEP is an input to the XOCP

algorithm. At every given IMEP, the corresponding CA50 is determined such that

ηII,W or ηII,CPEX is maximized. When the required engine load is changed, XOCP

finds the CA50OPT according to the maps in Figs. 4.8 and 4.9.

The CA50OPT at different engine loads based on the proposed XOCP algorithm are

shown in Figs. 4.8 and 4.9. CA50OPT trajectory, shown in Fig. 4.8, is the optimum

CA50 that maximizes the SLT efficiency (ηII,W ) at every given engine load. As seen

in Fig. 4.8, in low load engine operation, the mid-range CA50 values result in the

maximum ηII,W . At higher engine loads, a delayed combustion phasing results in
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Figure 4.10: Proposed Exergy-based Optimal Combustion Phasing
(XOCP) algorithm. XOCP is used to determine CA50OPT at every given
engine load. η in the algorithm can be either ηII,W or ηII,CPEX based on
the desired output.

higher ηII,W . Similar to Fig. 4.8, at every given engine load, the corresponding CA50

of the maximum value of ηII,CPEX is selected. Comparing CA50OPT trajectories in

Figs. 4.8 and 4.9 shows that the maximum ηII,CPEX occurs at higher CA50 values

compared to ηII,W . This can be explained by the fact that higher CA50 values (i.e.,

delayed combustion) lead to higher Texh which increases XExh. Considering XExh as

the useful output exergy in CPEX systems leads to greater values of efficiency for

ηII,CPEX compared to ηII,W .
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As seen in Figs. 4.8 and 4.9, the obtained trajectories are affected by the existence

of efficiency islands in Figs. 4.8 and 4.9. These islands depends on the experimental

data points used. Thus, it is important that enough engine data points are collected

to generate the ηII efficiency maps. The focus of this chapter is more on proposing a

methodology for optimum engine operation rather than absolute ηII values.

4.7 Control Oriented Engine Model

In this chapter, we introduce a control method for ICEs based on exergy. This control

method consists of steady-state and transient operation modes. In the steady-state

operation of the engine, SLT maps (Figs. 4.8 and 4.9) are used to find CA50OPT .

For the transient operation of the ICE, in-cylinder pressure is predicted using the

model introduced in Sec. 4.3.5. Then the model is used along with exergy Equations

(4.1) to (4.16). Next, the resulting model is combined with the model in [128] for

estimating residual gas and capturing thermal coupling dynamics that are caused

by residual gases from one cycle to the next engine cycle. The final model is able

to predict cycle-to-cycle combustion phasing, IMEP and exergy destruction/loss in

transient operation. The final nonlinear model is represented by the following state
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equations:

Xk+1 = f(Xk,Uk,Vk) (4.17a)

Y = CXk (4.17b)

where X is the vector of states, U is the vector of inputs and V is the vector of

disturbances. The control inputs and states of the ICE model are as following:

X = [CA50, TSOC , PSOC , Trg,mevc]T (4.18)

where TSOC and PSOC are the temperature and pressure of in-cylinder mixture at

SOC, respectively. Trg denotes residual gas temperature and mevc shows mass of

residual gases at EVC moment.

The control inputs vector consists of ON and φ as shown in Eq. (4.19):

u = [ON, φ]T (4.19)
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4.8 Exergy-based Control of Internal Combustion

Engines (XCICE)

Structure of the proposed XCICE controller is shown in Fig. 4.11. The XCICE

controls combustion phasing (CA50) and engine load (IMEP). Depending on the

required IMEP, a map-based feedforward integral controller adjusts the engine load

by manipulating the amount of injected fuel (i.e., fuel equivalence ratio, φ). Details

of the IMEP controller are found in [139]. The reference optimum CA50, shown as

ỹ2,ref in Fig. 4.11 is determined by IMEP − CA50− ηII map (Figs. 4.8 and 4.9) for

steady-state operation. For transient operation, ỹ2,ref is found using exergy model

along with an optimal controller to choose CA50 such that exergy loss/destruction

(Xd) is minimized.

Eq. (4.20) defines the control problem to find CA50OPT for transient engine operation.

We use Xd in Eq. (4.1) as the objective function. The following optimization problem

is solved at each engine cycle k.
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Figure 4.11: Structure of proposed Exergy-based Control of the IC engine
(XCICE).

min
CA50
{Xd} (4.20a)

subject to:

Xk+1 = f(Xk,Uk,Vk) (4.20b)

Y = CXk (4.20c)

0 ≤ ONk ≤ 100 (4.20d)

CA50 ≤ CA50k ≤ CA50 (4.20e)

δ◦ ≤ CA50k+1 − CA50k ≤ δ
◦ (4.20f)

(4.20g)
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where Eq. (4.20d) shows the constraint on ON as the control input. Eq. (4.20e) is

the output constraint on CA50 based on knock and misfire data [6] in which CA50

and CA50 are the lower and upper limits of combustion phasing. Due to the actuator

limitations, Eq. (4.20f) is defined to impose constraints on the rate of changes in

combustion phasing at lower and upper limits denoted with δ◦ and δ
◦.

Once the desired CA50 is determined, the ON (i.e., blending ratio of two PRF fu-

els) is adjusted using an integral state feedback controller described in [129]. This

feedback controller tracks the desired CA50 values. The integrator in the controller

helps to track the desired combustion phasing trajectory with no steady-state error.

A Luenburger state observer is used in the control structure since most of the con-

trol states cannot be measured in practice. This controller is tested on a detailed

experimentally validated ICE plant model [140]. The tracking results of the proposed

exergy-based controller for transient engine operation are shown in Fig. 4.12. An

IMEP trajectory (4.43 → 4.56 → 4.62 bar) in Fig. 4.12 (c) is used as the reference

load trajectory to test the proposed transient controller. The IMEP trajectory is sim-

ilar to the loads shown in Fig. 4.8. The controller tracks the CA50OPT using exergy

model in optimization framework shown in Eq. (4.20). Fig. 4.12 (a) shows the CA50

tracking performance with a settling time of one engine cycles. Fig. 4.12 (b) shows

the actuated ON as the control input for tracking the desired CA50. Fig. 4.12 (c)

shows the required IMEP, and Fig. 4.12 (d) shows the actuated input, φ to obtain

the required IMEP. Fig. 4.12 (e) demonstrates Xd for optimum CA50 trajectory and
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unoptimized case (i.e., CA50 = 8 CADaTDC). As shown in Fig. 4.12 (e), the opti-

mization algorithm introduced in Eq.(4.20) keeps Xd minimum for all transient cycles

compared to the unoptimized case.
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Figure 4.12: Results of the XCICE for tracking engine load (IMEP)
and combustion phasing during transient engine operation (N =
800 RPM, EGR = 0%, Pman = 100 kPa).

135



4.9 Optimization Results

Depending on the application of an ICE, the desired output and the SLT efficiency

are defined. For ICE applications in which output work is of primary interest, the

CA50OPT trajectory of ηII,W is used to increase the SLT efficiency and improve the

fuel economy. If CPEX is desired, then ηII,CPEX map is used to determine optimum

combustion phasing to maximize output exergy (XWork +XExh).

The CA50OPT trajectories based on ηII,W and ηII,CPEX maps are used to show the

effects of the proposed XCICE in fuel saving and output exergy saving in Fig. 4.13.

Experimentally calculated ηII,W map (shown in Fig. 4.8) is used to compare fuel

consumption. The baseline for comparison is a conventional practice where CA50 is

maintained constant (i.e., 8 CADaTDC). The fuel consumption for the optimization

modes of ηII,W and ηII,CPEX is compared with that of the baseline.

As shown in Fig. 4.13 (a), CA50OPT shown in ηII,W map leads to the best fuel saving

at every given IMEP. Fig. 4.13 (b) demonstrates the increase in total output exergy

(CPEX) when CA50 is selected based on ηII,CPEX map (i.e., Fig. 4.9).

Table 4.2 summarizes the fuel and exergy savings using the optimum combustion

phasing values derived from the trajectories illustrated on ηII,W and ηII,CPEX maps.

Compared to the unoptimized case, the average achieved fuel saving and exergy saving
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Figure 4.13: Fuel and exergy saving percentages compared to the unopti-
mized case (i.e., 8oaTDC) for the operating conditions in Fig. 4.8 and 4.9.
(a) fuel saving when the trajectories on ηII,W and ηII,CPEX maps are used,
(b) exergy saving (XWork + XExh) by using the trajectory shown on ηII,W
and ηII,CPEX maps. To calculate the saving percentage, x−x0

x0
× 100 is used,

where x0 is the corresponding value for the unoptimized case.

based on the ηII,W optimization mode are 6.7% and 7.2%, respectively. However, if

maximizing CPEX is of interest, by using the ηII,CPEX optimization mode, the average

output exergy saving (XWork +XExh) is 8.3% while 5.7% fuel saving is achieved. As

mentioned in Section 4.3.4, value of ηII,W is close to thermal efficiency of the engine

cycle, ηI . Thus, exergy and fuel savings can be compared to the commonly used

thermal efficiency by using ηII,W values.
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Table 4.2
Comparison of the fuel and exergy savings for different optimization modes.

Optimization
Mode

Combustion
Phasing

Avg. Energy
Saving (%)

Avg. Exergy
Saving (%)

ηII,W Variable CA50 6.7 7.2
ηII,CPEX Variable CA50 5.7 8.3

Unoptimized∗ CA50 = 8◦aTDC - -
*‘Unoptimized’ case is considered the baseline for savings calculation.

4.10 Summary and Conclusion

In this chapter, exergy is introduced as an effective metric to control the performance

of ICEs. We present a novel approach for Exergy-based Control of ICEs (XCICE)

for steady-state and transient engine operations. First, an exergy model for a single-

cylinder HCCI engine was developed. Then, an exergy analysis carried out using the

exergy model along with the experimental engine data. The main sources of exergy

loss/destruction including combustion irreversibility, heat-loss, and friction are iden-

tified based on the exergy analysis results. Depending on the ICE applications, two

different SLT efficiency maps were generated. The first SLT map was to maximize

the output work, while the second SLT map aimed for maximizing Combined Power

and Exhaust Exergy (CPEX). The optimal combustion phasing (i.e., CA50OPT ) at

every given IMEP was determined (i) using SLT maps for steady-state engine opera-

tion and (ii) using exergy model within Model Predictive Control (MPC) framework
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for engine transient ICE. A control method to track CA50OPT and IMEP was devel-

oped for both transient and steady-state engine operations. Here is the list of major

findings from this work for the studied engine:

† Exergy destruction due to combustion (Xd,Comb.) is the main source of exergy

loss in the ICE. Combustion irreversibility accounts for more than 40% of total

in-cylinder exergy destruction/losses for the 175 experimental data points in this

study. Heat-transfer, XHT , causes 12± 3% of the fuel exergy loss. In addition,

9±4% of the fuel exergy is lost/destroyed due to mixing irreversibility, unburnt

hydrocarbons, and blow-by gases. Finally, in-cylinder friction, Xd,Fric, destroys

4± 0.5% of the total exergy.

† Based on the application, two optimization objectives including (i) maximum

ηII,W , and (ii) maximum ηII,CPEX were defined for steady-state engine opera-

tion. CA50OPT is determined based on the SLT analysis. The results of the

proposed optimization method were compared to those from a conventional ap-

proach in which a constant (CA50 = 8 CADaTDC) is used. The results show

that on average, the proposed method can reduce the fuel consumption by 6.7%

when the output work is of interest. For cases in which CPEX is desired, such

as CHP systems, the proposed method can increase the desired output exergy

by 8.3% on average.

† Transient control of the engine via exergy-based MPC framework can minimize
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Xd while meeting required IMEP. The simulation results showed up to 5%

reduction in Xd by using the proposed transient control for the engine load

sweep in this study.

† Results from this study illustrated that ηII,W map along with exergy breakdown

of engine cycle can be used to determine the maximum available work (exergy).

Exhaust exergy can be utilized in a turbocharger or a TEG system in order to

increase the engine output work. Typical efficiency of TEG systems for ICEs

is around 5-8% [141]. Depending on the exhaust gas temperature and pressure,

the FLT and SLT efficiencies of the overall energy recovery system could be as

low as 8% and 24%, respectively [142]. Thus, when indicated work is the desired

output, one should never sacrifice work exergy for increasing the exhaust exergy.

The key outcome from this study is to show how the knowledge from an exergy

analysis can be used for ICE controls. The proposed XCICE method is generic and

can be applied to a wide range of ICEs. We presented the results for a specific type

of LTC engine known as HCCI with ON and φ as the control variables, yet the same

XCICE method can be applied to other ICEs with different combustion modes and

control inputs.
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Chapter 5

Bilevel Optimization Framework

for Smart Building-to-Grid

Systems1

This chapter proposes a novel framework suitable for bilevel optimization in a system

of commercial buildings integrated to smart distribution grid. The proposed opti-

mization framework consists of comprehensive mathematical models of commercial
1This chapter has been published in IEEE Transactions on Smart Grid [5]
(doi:10.1109/TSG.2016.2557334) with the granted permission in Appendix E. ©2016 IEEE.
Reprinted, with permission, from [M. Razmara, G.R. Bharati, M. Shahbakhti, S. Paudyal,
and R.D. Robinett, Bilevel Optimization Framework for Smart Building-to-Grid Systems,
IEEE Transactions on Smart Grid, April 2016. In reference to IEEE copyrighted material
which is used with permission in this thesis, the IEEE does not endorse any of Michi-
gan Tech’s products or services. Internal or personal use of this material is permitted. If
interested in reprinting/republishing IEEE copyrighted material for advertising or promo-
tional purposes or for creating new collective works for resale or redistribution, please go to
http://www.ieee.org/publications_standards/publications/rights/rights_link.html to
learn how to obtain a License from RightsLink.]
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buildings and underlying distribution grid, their operational constraints, and a bilevel

solution approach which is based on the information exchange between the two levels.

The proposed framework benefits both entities involved in the building-to-grid (B2G)

system, i.e., the operations of the buildings and the distribution grid. The framework

achieves two distinct objectives: increased load penetration by maximizing the dis-

tribution system load factor and reduced energy cost for the buildings. This chapter

also proposes a novel B2G index, which is based on buildingâĂŹs energy cost and

nodal load factor, and represents a metric of combined optimal operations of the

commercial buildings and distribution grid. The usefulness of the proposed frame-

work is demonstrated in a B2G system that consists of several commercial buildings

connected to a 33-node distribution test feeder, where the building parameters are

obtained from actual measurements at an office building at Michigan Technological

University.

5.1 INTRODUCTION

Building sector in the United States accounts for about 70% of electricity energy

consumption [12], in which 41.4% of energy consumption is directly related to the

space heating, ventilation, and air conditioning (HVAC). Thus, HVAC systems have

a great potential to reduce the energy usage/cost in buildings. As reported in [1,

28], smart control techniques, such as model predictive control (MPC), can provide
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significant energy saving. Development of MPC for optimal control of HVAC systems

has been a focus in [143, 144], which yields benefits to the operations of buildings and

electric power grid.

Smart grid technologies, such as smart appliances and home area network (HAN), ren-

der the electrical loads more manageable and controllable at customersâĂŹ premise,

and facilitates advanced demand side management (DSM) activities [145]. However,

existing mathematical models developed for customer side DSM mainly consider mini-

mization of electricity cost [146, 147], which results in increased load at hours with low

electricity price. Increased load at those hours may impact voltage performance in the

distribution grid. In [148], it is demonstrated that uncontrolled penetration of elec-

tric vehicle loads violates the voltage standards set by the ANSI. Thus, it is advisable

that DSM should be employed considering the operational requirements of customers

as well as the electric power grid. In DSM activities, distribution utilities are more

concerned about feeder loss minimization, load factor improvement, reactive power

optimization, etc., as part of their operational objectives [149, 150, 151, 152, 153, 154].

On the other hand, the objectives of DSM activities at customer level are mainly

focused on comfort maximization and cost minimization. This illustrates that the

objective set by the grid and customers in DSM activities could often be conflicting.

In [155, 156], promising results are obtained from DSM in reducing customer’s energy

price. In [155], pre-cooling and pre-floating is performed to reduce total electricity
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cost. In [156], optimization is performed with a trade-off between cost and user

comfort. In [147], HAN is employed to reshape the demand profile based on the

impact on distribution transformer. In DSM models proposed in [147, 155, 156],

customers obtain benefits by shifting the loads. The mathematical models used in

[147, 155, 156] consider peak power information from distribution grid as one of

the constraints of optimization but detailed modeling and operational constraints of

distribution system have not been considered. Thus, for advanced DSM activities in

Smart Grids, detailed mathematical modeling considering objectives and operational

requirements of customers and the distribution system with real-time information

exchange between customer and the grid is crucial; which is a major focus of the

proposed work.

Fig. 5.1 summarizes past studies related to three research categories: building, grid,

and integrated building-grid optimization. In the first category, optimal and model

predictive unidirectional building optimization are studied [1, 2, 27, 28, 30, 33, 35, 103,

143, 144, 157, 158, 159, 160]. In this category, building’s HVAC performance or opera-

tional cost is optimized using optimal or model predictive control technique. The sec-

ond category include studies in which distribution grid operation is optimized for var-

ious operational objectives considering aggregated loads [149, 150, 151, 152, 153, 154].

The third category includes building-to-grid (B2G) integration in which performance

of buildings including comfort level and energy cost is optimized considering grid side

information [146, 155, 161, 162, 163, 164, 165, 166], and demonstrates its usefulness
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Figure 5.1: Summary of past studies on building, grid, and B2G optimiza-
tion.

for grid services. However, in the modeling in [146, 155, 161, 162, 163, 164, 165, 166]

distribution grid is simplified or completely ignored. Survey results in Fig. 5.1 reveal

that there are extensive works accomplished in the area of control/optimization of

distribution grid and buildingâĂŹs HVAC systems independently. However, there is

little work done in the area of bi-directional B2G, including mathematical modeling

required for the B2G integration. This work proposes a bi-directional B2G optimiza-

tion framework based on detailed mathematical modeling of a B2G system.
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The proposed B2G framework is based on information exchange between the two

levels, i.e, the BEMS and distribution system operation (DSO) control center. The

predicted and optimized load profile of buildings are provided to the DSO by the

BEMSs. Similarly, maximum allowable load penetration information, that ensures

feasible grid operations, are provided to the BEMSs by the DSO.

For the demand response applications discussed in this work, a bidirectional com-

munication infrastructure is required, as shown in Fig. 5.2, between the BEMSs and

the DSO. Also, unidirectional communication links are required between the BEMSs

and the market operator (MO), BEMSs and local weather station, DSO and control

equipment at distribution level. The required communication infrastructure must be

secure, reliable, and low-cost for autonomous interactions [167, 168]. In this proposed

work, the interaction between the two levels, i.e., the building and grid, are kept at

the minimum; thus, the communication bandwidth usage is sporadic. The informa-

tion that building receives from the grid control center is the maximum demand limit,

which can be sent once every 15-30 minutes for next couple hours to next day. Build-

ing receives information from utility or MO about energy price once per day (i.e., the

day ahead energy price) and/or every 5 minutes to one hour (i.e., the real-time energy

price), depending on which energy rate is applied to the building customers. Building

receives weather forecast on daily basis and/or the hourly weather update. It should

be noted that the information flow depends on the variation of the parameters in

the building and grid models during the course of operation, and the type of services
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the building loads provide to the grid (such as demand response, regulation). The

communication infrastructure must be flexible to interact with the existing and future

BEMSs and communication protocols such as Modbus, RS-484, BACnet, etc. [167].

To manage real-time and bidirectional information exchange cloud computing can

be deployed [168]. VOLTTRON, OpenADR, BEMOSS are some of the open source

platforms that can be utilized for the implementation of the proposed models at the

customer and grid levels [169, 170, 171].

Figure 5.2: Conceptual building to grid communication framework.
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This study improves previous single level optimization of buildings by considering

the grid model and builds upon preliminary results in [172] by the authors. To our

knowledge, it is the first study that proposes a bilevel optimization framework in B2G

interaction, which benefits both building and grid operations. The contribution of

this chapter is on the development of generic hierarchical optimization framework for

B2G system, which is essential for coordinated control of multiple BEMSs connected

to distribution grid for large scale demand response and other grid level services.

More specifically, to reach this goal this dissertation:

1. develops a physics-based comprehensive mathematical model of HVAC system

and model predictive controller (MPC) with the aim of minimizing buildingâĂŹs

electricity costs. The MPC controller works in grid friendly manner, i.e, it com-

municates with distribution grid control center and incorporates the constraints

set by the grid controller required for the feasibility of grid operation.

2. develops a detailed and generic mathematical model of distribution grid that

coordinates with several building controllers to optimize the operation of the

power grid.

This PhD dissertation proposes a novel B2G index that ensures the benefits at the

grid level from the building side optimization, and develops a coordination algorithm

to solve the hierarchical B2G framework.
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Rest of this chapter is organized as follows. Section II presents mathematical mod-

els of building and distribution system, MPC based optimization model at building

level, and distribution grid optimization model. Section III discusses methodology

for bidirectional optimization and the proposed B2G index. Section IV describes the

building testbed and distribution test feeder. The results of case studies are presented

in Section V, and the main conclusions from this work are included in Section VI.

5.2 Mathematical Modeling

5.2.1 Building Components Thermal Modeling

Convection, radiation and conduction are the main heat transfer ways in buildings

which are time varying. We use a common building modeling approach known as

nodal approach to model building’s construction and materials with electrical com-

ponents such as resistors, capacitors, and current sources [1, 106]. For this purpose,

buildings are considered as graphs containing walls and rooms as nodes. p represents

number of nodes, q out of p nodes are rooms, and the remaining p−q nodes are walls.

i = 1, . . . , q numbers are assigned to each room. The following equation determines
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the heat transfer of the walls [106]:

dTwi,j
dt

= 1
Cw
i,j

(
∑

k∈Nw
i,j

T rk − Twi,j
R
wi,j

k

+ ri,jγi,jA
w
i,jQ

rad
i,j ) (5.1)

where Twi,j is the temperature of the wall between room i and room j, Cw
i,j is the heat

capacity of the wall between room i and j, T rk is the temperature of adjacent rooms

to wall wi,j. Thermal resistance between the center-line of wall (node wi,j) and the

neighboring node k is denoted with R
wi,j

k . γi,j and Awi,j are radiation heat absorption

coefficient and area of wall between room i and j, respectively. Wall identifier is

shown by ri,j which is equal to 0 for internal walls, and equal to 1 for peripheral

walls. Qrad
i,j represents the radiative heat flux density on wall (i, j) while Nw

i,j is the

set of all neighboring nodes to node wi,j.

The following equation governs the temperature of the ith room [106]:

dT ri
dt

= 1
Cr
i

(
∑
k∈N r

i

[
Tk − T ri
Ri,k

+ πi,kτ
w
k A

win
i,k Q

rad
i

]

+ ṁr
i cpavg(T si − T ri ) + Q̇int

i )

(5.2)

where Cr
i and ṁr

i denote the heat capacity and air mass flow into or out of the room

i, respectively. Tk is the temperature of surrounding node k to room i. cpavg denotes

the average specific heat capacity of air and T si is the temperature of the supply air to

room i. πi,j is window identifier which is equal to 0 if there is no wall between room
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i and j, otherwise equal to 1. Awini,j is the total area of window between room i and

surrounding room j, τwi,j is the transmissivity of glass of window between room i and

j, Qrad
i is the radiative heat flux density per unit area radiated to room i, and Q̇int

i

denotes the internal heat generation in room i. N r
i is the set of all nodes surrounding

room i.

The disturbance to the model, w(t), is function of neighboring room temperature,

T rk (t), internal heat generation in rooms Q̇int
i (t), and radiative heat flux density on

walls, Qrad
i (t). The disturbance is given by [106]:

w(t) = g(T rk (t), Qrad
i (t), Q̇int

i (t)) (5.3)

Function g is approximated as a linear function of T rk (t), Qrad
i (t) and Q̇int

i (t). Thus,

the disturbance is w = aT rk (t) + bQrad
i (t) + cQ̇int

i (t).

Heat transfer of each wall and room equations and disturbance form the system

dynamics of building are represented in state-space form by:

ẋ(t) = f(x(t), u(t), w(t), t)

y(t) = Cx(t) (5.4)

where x(t) ∈ Rn is the state vector. State vector includes nodes’ temperature in
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the nodal network. y(t) ∈ Rm is the output vector of the system presenting thermal

zones’ temperature. Thermal zone is a section of a building that is required to meet

certain comfort level. In this chapter, each room is considered as a thermal zone.

The input vector which is the air mass flow rate and its temperature for each zone is

shown with u(t) ∈ Rl×m. l is the number of inputs to each thermal zone (i.e., air mass

flow and supply air temperature). C is the output matrix with proper dimension to

return output, y(t), from states.

In our testbed, HVAC air mass flow rate is directly measured using a vent mass

flow meter. Density, heat capacity, trasnsmissivity and etc. are determined using

standard engineering thermodynamics tables. There are unknown (e.g., wall heat

capacitance and outside air convection coefficient) that are determined for the testbed

using Unscented Kalman Filter (UKF) techniques presented in [1].

Equation (5.4) describes the nonlinear time evolution of the system. The supply

air temperature (i.e., input to the system) is multiplied by the air mass flow, which

is the other time-varying known input to the model. Given that the air mass flow

rate is constant during day, we can consider the linearized form of the system. We

use Euler’s discretization method to discretize the state update equation (5.4) for

controller design. The state-space model is given by:

xk+1 = Axk +Buk + Ewk (5.5)
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where wk is the disturbance vector at instant k and E is the disturbance coefficient

matrix with appropriate dimension.

Fig. 5.3 represents the experimental validation of the building thermal model for few

days in winter. Fig. 5.3(a) compares the simulated and measured room temperature,

and Fig. 5.3(b) illustrates the heat-pump power based on the difference between the

room temperature and the measured supply air temperature. Details of HVAC heat-

pump system are discussed in Section 4.2.
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Figure 5.3: Experimental validation of the building thermal model for a
sample room/zone.
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5.2.2 Building Optimization Model-I

The main goal of optimization is to minimize energy cost by the building’s HVAC

system. For this purpose, both HVAC energy usage and time varying electricity price

are taken into account. Energy usage is characterized by the energy index Ie which

is defined as [1]:

Iet =
24∑
t=1

PB
t ∆t (5.6a)

PB
t = P h

t + P c
t + P f

t + P o
t (5.6b)

where PB
t is the active power consumption of building. P h is heating power, P c, and

P f are cooling power and fan power, respectively. We denote all buildings’ other

loads with P o which includes lighting and appliances loads. Heating, cooling and fan

power consumption are determined by [1]:

P h
t = ṁr

i (t)cp,air[T ht − T ri,t] (5.7a)

P c
t = ṁr

i (t)cp,air[T ri,t − T ct ] (5.7b)

P f
t = λ(ṁr

i )3 (5.7c)
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where T h and T c are the supply air temperatures in the heating mode and the cooling

mode, respectively and these variables are the system control inputs. Equations (5.7a)

and (5.7b) represent the relationship between the HVAC heat-pump power consump-

tion and the temperature difference. λ [W.s3.kg−3] is the coefficient of fan which

defines the cubic relation between power required and mass flow rate. Since air mass

flow rate is not a control input in the state model, and it is constant during the

daytime, fan power, P f , does not affect optimization result.

The temperature difference between supply air and the room air is proportional to

electrical energy consumption. Hence, the building controller keeps the room tem-

perature within the comfort levels such that energy cost is minimized. We use the

proposed objective function in equation (5.8a) to minimize energy cost. In addition,

soft constraints (i.e., ε) are implemented to guarantee feasibility of optimal solution

at all times. The following optimization problem is being solved at each time step t,

and cumulative cost is calculated from t to tmax:
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min
Ut,ε̄,ε
{(
tmax∑
t

Iet ΩT ) + ρ(|εt|1 + |εt|1)} (5.8a)

subject to:

xt+k+1|t = Axt+k|t +But+k|t + Edt+k|t (5.8b)

yt+k|t = Cxt+k|t (5.8c)

U t+k|t ≤ ut+k|t ≤ U (5.8d)

δU ≤ ut+k+1|t − ut+k|t ≤ δU (5.8e)

T t+k|t − εt+k|t ≤ yt+k|t ≤ T t+k|t + εt+k|t (5.8f)

εt+k|t, εt+k|t ≥ 0 (5.8g)

where (5.8b) and (5.8c) form building’s state model, (5.8d) and (5.8e) are constraints

on input i.e. supply air temperature, (5.8f) is output constraint on temperature

of room and (5.8g) represents the constraint on slack variables. Constraints (5.8b)

and (5.8d) should hold for all k = 0, 1, ..., N − 1, and N is the prediction horizon.

In section 5.5.6, effect of N on simulation results will be discussed. (5.8c), (5.8e),

(5.8f), and (5.8g) should hold for all k = 1, 2, ..., N . Ut = [ut|t, ut+1|t, · · · , ut+N−1|t]

represents control inputs vector and ut+1|t is the estimated value of ut+1 at time

t, εt = [εt+1|t, · · · , εt+N |t] and εt = [εt+1|t, · · · , εt+N |t] are the slack variables. Slack

variables are added to ensure feasibility of optimal control problem. In equation (5.8a)

there is penalty (ρ) for slack variables. Therefore, by choosing large values for ρ, the
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optimizer enforces the slack variables to take small values and does not violate the

temperature constraints. ρ characterizes the flexibility of a building to provide services

at the grid level. ε is not a pre-determined value in the optimization; however, by

choosing large enough values for ρ, deviation from comfort bound (i.e., ε) is guaranteed

to be minimum. In Equation (5.8a), lower values for ρ leads to higher flexibility for

grid level services; however, this results in occupants’ discomfort [1]. Equation (5.8f)

defines the relationship between the room temperature and the slack variable value.

Ω is dynamic pricing of electricity which is considered to be independent of power

consumption by the building loads. yt+k|t is the vector of thermal zone temperature,

dt+k|t is the disturbance load, and T t+k|t and T t+k|t for k = 1, · · · , N are the lower and

upper bounds on the zone comfort level, respectively. U t+k|t and U are the lower and

upper limits on the supply air temperature delivered by the heat-pump of the HVAC

system, respectively. Operational limit on maximum supply air temperature is not

time varying, therefore time invariant constraint U is used. δU and δU are limitation

on rate of change of supply air temperature according to dynamics of heat-pump

condenser.
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5.2.3 Building Optimization Model-II

Objective of this optimization model is the same as (5.8). However, an additional

constraint is used as a feedback from distribution grid, which is given as:

PB
t ≤ P var

t (5.9)

where P var
t is the maximum allowable building active power penetration in the distri-

bution grid, which will be discussed in Section 5.2.4. Equations (5.6), (5.7a)-(5.7c),

(5.8b)-(5.8g), and (5.9) define equality and inequality constraints of the optimization

model.

5.2.4 Distribution Grid Optimization Model-I

Objective of this optimization model is to determine maximum additional building

loads that can be connected at different nodes of the distribution system. This in-

formation is used as a feedback to the building optimization model-II described in

Section 5.2.3, which represents information exchange between the two levels of the

bilevel optimization framework. Mathematically, objective function can be written
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as:

max


tmax∑
t=1

∑
nb∈n

P var,nb
t

 (5.10)

where n represents nodes and nb represents nodes where buildings are connected.

Equality constraints of the grid optimization model include component modeling and

voltage/current balance equations. Distribution feeders, transformers, and voltage

regulators with load tap changers (LTCs) are modeled using ABCD parameters as

described in [173]. Constant power, constant current, and constant impedance loads

are considered at each node. Mathematically, these equality constraints can be rep-

resented as:

 V n
t

Isen,mt

 =

a
m bm

cm dm


V

n+1
t

Ires,mt

 (5.11a)

Ires,m−1
t = Isen,mt + IZ,nt + II,nt

+ IP,nt + IC,nt + Ivar,nt (5.11b)

Zn IC,nt = V n
t Ctapnt (5.11c)

where m represents feeder branches, Ires,m−1
t and Isen,mt are receiving and sending

end currents on branch m − 1 and m, respectively. For branches with LTC, am =

1
1+∆s·Ttapm

t
, bj = cj = 0 and dj = a−1

j where ∆s represents voltage change (p.u.) with

one step change of transformer tap position and Ttapmt represents LTC tap positions,

160



Zn is the impedance of single capacitor in a bank at nominal power and voltage.

IP,nt , II,nt , IZ,nt , and IC,nt are the currents from the constant power, constant current,

constant impedance loads, and capacitor banks connected at node n, respectively. V n
t

represents nodal voltage and Ctapnt represents number of capacitor banks switched

on.

Base loads in the distribution feeder are modeled using sum of constant power, con-

stant current, and constant impedance loads. Building loads are additional power

to the grid and modeled as constant power load. Building load current in terms of

building power can be calculated using:

V nb
t (Ivar,nbt )∗ = P var,nb

t

cosφ
∠φ (5.12)

where φ is the power factor angle of the building load. An additional equation is

needed to ensure that building load penetration is allowed fairly in the distribution

grid. Thus, a fairness index (IFt ) is defined to ensure fair distribution of building

loads as:

IFt = P var,nb
t

PE,nb
t

(5.13)

where, PE,nb
t is the base load in nodes nb.

Inequality constraints of the distribution grid optimization model include limits of
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voltage as per ANSI standards, limits on capacitor and LTC positions, limits on IFt ,

and other limits such as feeder capacity, transformer capacity, etc. Mathematically,

the inequality constraints can be written as,

V ≤ V n
t ≤ V (5.14a)

0 ≤ Ctapnt ≤ Ctap
n
,∀ Ctapnt ∈ I (5.14b)

Ttap ≤ Ttapmt ≤ Ttap,∀ Ttapmt ∈ I (5.14c)

0 ≤ IFt ≤ I
F (5.14d)

In Equations (5.14a, 5.14b, 5.14c, & 5.14d) overbar and underbar denote the max-

imum and minimum value for variable, respectively. Equation (5.14a) ensures that

the voltage limits are within the standard set by ANSI. Equations (5.14b) and (5.14c)

are the limits on tap positions in transformer and capacitor banks, which take integer

numbers only.

5.2.5 Distribution Grid Optimization Model-II

Objective in this optimization model is to maximize the system load factor. Mathe-

matically, this objective function is written as [174, 175]:

max

{ ∑tmax
t=1 Pt

tmax |Pt|∞

}
(5.15)
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where, Pt total active power load connected to the distribution grid at hour t is

calculated as:

Pt =
∑
n

<
{
V n
t (IZ,nt + II,nt + IP,nt )∗

}
+
∑
nb

P var,nb
t (5.16)

Equations (5.11), (5.12), and (5.14) represent the equality and inequality constraints.

Load factor in (5.15) is improved by controlling LTC and switched capacitor banks.

For grid power flow analysis and distribution grid optimization model-II, P var,nb
t =

PB,nb
t , which is obtained from (5.6).

5.2.6 B2G Index

In the hierarchical approach to solve the proposed optimization models, the lower

level is concerned about the electricity costs in buildings, while the upper level is

concerned in maximizing the system load factor. A worthwhile B2G optimization

should maintain an appropriate compromise between low electricity cost in buildings

and high load factor in the distribution system. To account for this, we define a

new B2G index (IB2G) to assess the performance of the proposed B2G optimization

framework, which allows reduction in the electricity costs and improvement of system

load factor starting at the building level with the use of nodal load factor. The B2G
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index is defined as:

IB2G = α (Iet ΩT ) + β

L−1
f︷ ︸︸ ︷

tmax
∣∣∣PB,nb
t

∣∣∣
∞∑tmax

t=1 PB,nb
t

(5.17)

where α and β are the weight factors for energy price (IeΩT ) and nodal load factor

(Lf ), respectively. The smaller the IB2G index, the better the performance for the

B2G optimization. The ratio of weight factors, α to β, determines the importance of

energy cost compared to the system load factor. α and β are the design parameters

in the B2G optimization problem and can be adjusted by the building and grid

operators, depending on whether the benefits from the building side or the benefits

from the grid side are more desirable. Thus, selection of proper values of α and β

for optimal operation system requires sensitivity analysis of the building-grid system

under consideration.

In the case studies, IB2G is used as an alternative objective function to (5.8a) in build-

ing optimization models. Note that (5.8a) does not account for grid’s objective; while

the proposed B2G index considers the grid’s objective in the building optimization

model with consideration of the nodal load factor.
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5.3 Solution Method

A solution method, shown in Fig. 5.4, is proposed for the bilevel B2G optimization

framework. The proposed solution method consists of information exchange between

the two levels, i.e., the commercial buildings and the grid control center; thus, it is

bidirectional in nature. The B2G optimization framework consists of two optimization

models for the demand side (i.e., building systems) and two optimization models for

the supply side (i.e., distribution grid). These optimization procedures include:

† Building Optimization Model-I: Building energy cost minimization;

† Distribution Grid Optimization Model-I: Maximizing penetration of building

loads in the distribution grid;

† Building Optimization Model-II: Minimizing building electricity cost consider-

ing constraints from grid side (5.9);

† Distribution Grid Optimization Model-II: Maximizing load factor of distribution

grid.

The solution procedure begins with the demand side optimization with an objective

to reduce electricity cost for the next day (label A in Fig. 5.4). At this stage, the

optimized load profiles of each of the commercial buildings are made available to the
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distribution grid control center. A distribution grid power flow analysis is carried out

to confirm the feasibility of building load profiles. The feasibility test checks various

operational constraints of the distribution grid including voltage limits as per ANSI

standards defined by (5.14a)-(5.14c). Violation of operational constraints makes the

building loads in-feasible for grid operation. In case the building loads are feasible for

the grid (label B in Fig. 5.4), tap positions of capacitor banks and transformers are

calculated using distribution grid optimization model-II, which maximizes the system

load factor.

In case of in-feasibility of the building loads from grid side, the maximum allowable

load, PB,ib
t , is obtained from the distribution grid optimization model-I. PB,ib

t is used

as a feedback to the BMS system (label D in Fig. 5.4) to solve the building opti-

mization model-II. If the updated optimization is feasible, then the optimized load

profile is sent back to the distribution optimization model-II to maximize load factor

(label F in Fig. 5.4). Otherwise, other options like changing building’s temperature

requirements (label E in Fig. 5.4) becomes necessary. Next, building optimization

model-II is solved by considering the feedback from the grid as additional constraint.

Then, the resulting building load profile information is sent to the distribution grid

control center, which is used to solve distribution optimization model-II.
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Figure 5.4: Proposed bidirectional B2G optimization flowchart.
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Change of the control variables, i.e., LTC and capacitor banks may result in dif-

ferent node voltages from the two distribution grid optimization models, which in

turn can impact the voltage dependent loads and make the grid optimization prob-

lems in-feasible. Thus, depending on the types of load used in the distribution grid

optimization model, the whole solution process may need to reiterate. An alternate

approach to handle this issue is to consider a small unused margin of power in the max-

imum allowable loads in (5.10) that can accommodate change in power consumption

of loads due to the voltage change. However, this change will not affect the feasibility

of HVAC system since they can be considered as constant power load [176].

5.4 Test Systems

5.4.1 Building Testbed

A commercial three story Lakeshore Center building with an area of 61, 500ft2 at

Michigan Technological University (MTU), Houghton, Michigan, is considered as the

testbed. The testbed is equipped with ground-source heat-pumps (GSHP) to provide

required energy for heating and cooling. GSHPs transfer geothermal energy from the

ground to rooms. GSHPs are HVAC energy efficient technologies with high coefficient

of performance (COP). The GSHPs in this study have a nominal COP of 3.2.
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Each room is equipped with a GSHP to maintain comfort of occupants. Fig. 5.5

shows the schematic of the building with GSHPs connected to the distribution grid

at node #10. Temperature of each zone in Lakeshore Center building is measured

using a temperature sensor from the BMS with accuracy of ±0.2◦C. HVAC system in

the testbed consumes up to 44% of electricity in winter, while the rest of electricity

consumption is attributed to lighting, computers, and office appliances. Historical

data of energy consumption of an office building at MTU is used to compute the

share of energy consumption of major loads in the testbed.

Figure 5.5: Schematic of the testbed with a ground-source heat-pump. Two
temperature sensors are used to measure the average room air temperature.
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5.4.2 Distribution Test Feeder

A standard single phase 12.66 kV, 33-node distribution feeder [150] is considered for

the case studies. The standard test system is modified by adding a regulator and

capacitor banks to account for the control equipment available in distribution grids.

As shown in Fig. 5.5, a transformer is equipped with voltage regulator (connected

between 10th and 11th nodes in the test systems), which maintains the voltage at

node 11 within ±10% of the nominal value. A 32-step regulator is considered, and a

single tap change represents voltage of 0.00625 p.u. Capacitor banks are connected at

8th and 16th nodes of the feeder and are modeled as constant impedance load capable

of delivering reactive power to the grid. Identical five units of capacitors with 10 kVAr

each are considered, which are represented as switched capacitors with tap positions

from 0 to 5.

It is assumed that smart buildings are connected at four arbitrary nodes, i.e., nodes

2, 10, 18, and 31. Each building is considered to have twenty identical zones with

similar load profiles and with the same temperature requirements.
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5.5 Results

The building model is implemented in MATLABr and YALMIP [109] toolbox is used

to provide a symbolic syntax to formulate the problem and interfaces with the opti-

mization solver. Distribution system optimization model is developed in GAMS [177].

The accuracy of the building model is validated using actual measurements collected

from an office building at Michigan Tech [1]. The distribution grid model is validated

using the results in [150].

This work considers the weather forecast and energy price as the inputs required for

the building and grid optimization models. Thus, electricity dynamic pricing avail-

able from Midcontinent Independent System Operator (MISO) is used [9]. Weather

forecast information available from a local weather station is used. The constraints

on the room temperature are set based on ASHRAE standards [66]. Other building

and grid parameters used in the simulation can be found in [2] and [150], respectively.

The optimization results are compared with the non-optimized rule-based controller

(RBC). We use same ∆t = 1 hour time step to have a fair comparison among B2G

optimizers in this study. Given the slow thermal behavior of the testbed building and

the type of demand response applications, one hour time step is sufficient to capture

the dynamics. Depending on building type, a shorter time step may be required.
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For the case study, five buildings each having twenty zones are connected at node 2 of

the distribution grid, similar three buildings are connected at node 10, four buildings

are connected at node 18, and seven buildings are connected at node 31. In this

chapter, the optimization results are only presented for the buildings at node #10

(see Fig. 5.5). The nodal load factor is presented for the node #10 as a node repre-

senting B2G system. In addition, system level load factors are also determined for

the distribution grid system to compare the operation of different B2G optimizers.

As mentioned in the Section I, HVAC systems account for a large amount of load

in buildings. Therefore, in this study, we focus on controlling the HVAC load of the

buildings which is considered to be dispatchable. Other loads in buildings including

lighting, appliances, and base loads in the distribution grid are considered to be non-

dispatchable. For MPC simulation, a prediction horizon of N = 24 is used with time

step of 1 hour. Here, we introduce three different optimization methods and compare

them with the RBC.

5.5.1 Unoptimized Rule Based Control

In this approach, when temperature goes below the lower-bound temperature, the

HVAC RBC keeps the heat-pump compressor on for the duration of ∆t. In the

next time step, the RBC checks the room temperature again and determines whether
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Table 5.1
Performance of four different B2G optimization techniques, compared to

the unoptimized (RBC) case study.
Optimization Monthly Bldg. Monthly Bldg. elec. Node #10 System (grid) IB2G Bldg. cost Bldg. energy

type elec. cost [$] consumption [kWh] load factor [-] load factor [-] index [-] saving* [%] saving* [%]
One day ahead prediction (including weather, dynamic pricing, comfort bounds, etc.)

Unoptimized (Base case) 935 368.1 0.41 0.72 10.50 0 0
Optimized (Bldg Unidirectional) 693 310.6 0.44 0.81 9.2 26 16
Optimized (Grid Unidirectional) 909 341.4 0.84 0.86 8.7 3 7

Optimized (Bidirectional) 698 310.1 0.46 0.84 8.8 25 17
Optimized (Using IB2G) 707 305.2 0.67 0.84 6.9 24 17

*Percentage saving is calculated by x−x0
x0
× 100, where x0 is the energy consumption/cost for the

unoptimized (base) case.

Table 5.2
Performance of two different B2G real-time optimization techniques,

compared to the unoptimized (RBC) case study.
Optimization Monthly Bldg. Monthly Bldg. elec. Node #10 System (grid) IB2G Bldg. cost Bldg. energy

type elec. cost [$] consumption [kWh] load factor [-] load factor [-] index [-] saving* [%] saving* [%]
Real-time prediction (including weather, dynamic pricing, comfort bounds, etc.)

Optimized (Bidirectional) 752 308.9 0.47 0.81 9.8 20 16
Optimized (Using IB2G) 758 308.6 0.59 0.83 7.9 19 16

*Percentage saving is calculated by x−x0
x0
× 100, where x0 is the energy consumption/cost for the

unoptimized (base) case.

the room temperature is within the comfort bounds. The monthly electricity cost

of the building and energy consumption along with other B2G metrics are listed in

TABLE 5.1.

5.5.2 Building/Grid side Optimizations

The results of uncoordinated building side and grid side optimization are presented

here. Fig. 5.6 shows the results of a building MPC controller using building optimiza-

tion model-I. The main objective in the building-side optimization is to minimize
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building electricity costs. Fig. 5.6 (a) demonstrates the temperature profile of the

room, and Fig. 5.6 (b) shows load distribution of buildings connected to node #10

including lighting load, appliances (computers, elevators, refrigerators, etc.) and

buildings’ HVAC load. Building load distribution is based on simulation results car-

ried out for Lakeshore Center building at Michigan Tech using Carrier HAP software.

Fig. 5.6(c) shows load distribution on node #10. Fig. 5.6(d) illustrates the build-

ing electricity load and the maximum feasible load for node #10 which is obtained

from distribution optimization model-I block shown in Fig. 5.4. In Fig. 5.6(d), the

importance of grid-wise optimization for buildings is emphasized since the optimized

building loads violate the maximum allowable loads by the grid. Note that in Fig. 5.6,

the power and supply temperature peaks at unusual time is due to the pre-heating

of the HVAC system when the electricity price is cheaper. The dynamic pricing and

result HVAC cost are shown in Fig. 5.7. The monthly building electricity cost is listed

in TABLE 5.1. Compared to the RBC, building-side optimization results in 26% cost

saving and 16% energy saving.
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Figure 5.6: Building-side optimization: (a) Control input and resulting
temperature profile for the building MPC controller, (b) Buildings’ load
profile including HVAC load, lighting load and appliances load, (c) Buildings’
total load at node #10 and base load, (d) Buildings’ electricity load versus
maximum feasible load for node #10.
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Figure 5.7: Building-side Optimization: dynamic pricing versus hourly
cost for the building.

If the objective is to maximize load factor in the distribution grid (i.e, the grid-

side optimization), the nodal load factor is significantly increased to 0.84 , while the

building’s energy cost increases.

5.5.3 Bidirectional Optimization

The proposed B2G methodology in Section 5.3 is applied for the case study similar to

that in subsection 5.5.2. Building optimization results are illustrated in Fig. 5.8 and

summarized in TABLE 5.1. The results show the B2G optimizer satisfies the building

comfort levels, while keeping the building load under the maximum load allowed by
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the distribution grid. In addition, compared to the unidirectional (demand side)

optimization, the system level load factor is increased from 0.81 to 0.84. IB2G index

also depicts a significant improvement as seen in TABLE 5.1. Bidirectional optimizer

offers 25% cost saving compared to the unoptimized case while energy cost saving

is only dropped by 1% compared to unidirectional (building side). Thus, this case

study demonstrates that with the grid constraints, the cost of operation of buildings

increases, but it ensures a feasible operation of the grid.
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Figure 5.8: Bidirectional optimization: (a) Control input and room tem-
perature profile for the MPC controller, (b) Building load vs maximum fea-
sible load.
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5.5.4 Bidirectional Optimization Using IB2G Index

IB2G index provides a way to control/formulate the importance of building benefits

versus grid benefits. The results of bidirectional optimization using IB2G index are

shown in Fig. 5.9 and summarized in the TABLE 5.1. As expected, the new opti-

mization approach leads to the best result in terms of IB2G. The smaller value for

IB2G, the better performance for the B2G system. Using IB2G in the building ob-

jective function helps to improve building/nodal load factor and consequently better

system level load factor, while minimizing the building energy costs. As a result,

IB2G is better in the new bidirectional optimization, compared to the bidirectional

optimization with objective 5.8a. 0.5 and 0.54 are chosen for α and β, respectively, to

provide comparable weight to building and grid. Selection of α and β can be another

optimization problem which is outside the scope of this work. In this case study, the

cost of electricity is decreased by 24% with respect to the base case and both nodal

and system load factors are significantly improved compared to the base case.

If α in IB2G in the bidirectional optimization is chosen to be zero, the bidirectional

optimization becomes unidirectional which mainly satisfies the grid benefits (Grid uni-

directional in TABLE 5.1). As expected, this leads to the best load factor compared

to other four cases in TABLE 5.1. But, the buildings’ electricity cost is increased

by 21% compared to the bidirectional IB2G case. Overall, bidirectional optimization
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using IB2G provides an optimization platform in which an operator can easily decide

the desirable compromise for the benefits of customers and the grid. By using the

proposed IB2G index as the optimization cost function, the temperature boundaries

are met based on the ASHRAE standards.
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Figure 5.9: Bidirectional optimization based on IB2G index: (a) Control
input and resulting temperature profile, (b) Building load versus maximum
feasible load.
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5.5.5 Impact on Voltage Performance

Permissible voltage range, as specified in ANSI C84.1, is one of the standards to

maintain power quality in distribution feeders. Fig. 5.10(a) shows the voltage at few

selected nodes for unidirectional optimization (building-side) which are violated in

certain hours, and (b) illustrates that the optimization model with IB2G index where

voltages are maintained within the limits.

1 5 10 15 20 24

0.94

0.96

0.98

Vo
lta

ge
 (p

.u
.)

(a)

 

 
Voltage lower bound Node #15 Node #17

0 5 10 15 20 24

0.94

0.96

0.98

Time (hour)

Vo
lta

ge
 (p

.u
.)

(b)

 

 
Voltage lower bound Node #15 Node #17

Figure 5.10: Voltage at selective nodes. Fig. (a) shows the voltage profile
of unidirectional optimization and Fig. (b) illustrates the voltage profile of
bidirectional optimization (using IB2G index).
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5.5.6 Hour-ahead vs Day-ahead Optimization

In the case studies in TABLE 5.1, the prediction horizon N is considered to be 24. It

means that the optimization algorithm has prediction of weather forecast and dynamic

pricing for the next 24 hours. If the weather forecast or prediction of electricity cost

(dynamic pricing) is not available or not accurate for that period, the MPC algorithm

cannot find the optimal solution for the next 24 hours. Here, we show two examples

that the dynamic pricing and the weather forecast are available for the next hour

in TABLE 5.2. Simulations for two proposed methods, bidirectional using (5.8a)

and bidirectional using IB2G, are carried out to demonstrate the effect of prediction

horizon on the cost saving and IB2G index. Results show that B2G metrics deteriorate

by reducing the prediction horizon but the proposed algorithm still offers benefits for

both grid and buildings. Using the real-time B2G optimization, building electricity

cost drops up to 20% and building load factor increases over 0.1 compared to the

baseline unoptimized case.

5.5.7 Impact of Dynamic Pricing and Seasonal Weather

The savings on electricity price and improvement on system load factor greatly de-

pend on various factors including dynamic pricing, weather, flexibility of commercial
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building’s loads, building’s temperature set-points, available control equipment in the

building and distribution grid, and accuracy/availability of the forecasts. The impact

of dynamic pricing and weather variations on the customer’s cost savings and system

load factor are also studied.

Fig. 5.11 (a) shows the weather condition for three sample days in Fall, Winter, and

Spring in our testbed. Fig. 5.11 (b) illustrates three different dynamic energy prices

at nodes in Michigan, Illinois and Minnesota. Based on the weather and energy price

data, two sets of simulations are carried out. Fig. 5.12 (a) shows the effect of weather

on the building’s electricity cost and system load factor for the three seasons by

keeping the dynamic energy price same (Michigan node). Fig. 5.12 (b) demonstrates

the effect of dynamic pricing on the electricity cost saving and the system load factor

improvement using same weather forecast (Fall). During the Winter, 33% saving in

electricity cost and 8% improvement on system load factor. However, as weather

gets warmer, the cost saving decreases. For instance, in Spring, only 6% decrease in

electricity bill compared to RBC is observed. The reason for less saving in Spring

compared to Winter is that the cold outside weather in Winter makes HVAC running

more often which provides more opportunities to save energy costs by shifting the load.

Less constraints (i.e., heating requirement) on the HVAC controller in Spring/Fall

compared to Winter provides more flexibility for load factor optimization. Thus the

percentage of increase in the B2G system’s LF is more in Fall/Spring compared to

that in the Winter. Finally, the results in Fig. 5.12 (b) show that the proposed B2G
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optimization provides cost saving and system LF increase for all the three dynamic

pricing profiles studied.

Time (hour)
1 5 10 15 20 24

Te
m

pe
ra

tu
re

 (°
C

)

-20

-10

0

10

20
(a) Winter

Fall
Spring

Time (hour)
1 5 10 15 20 24

D
yn

am
ic

 p
ric

in
g 

($
/M

W
h)

0

100

200

300

400
(b)

MI
IL
MN

Figure 5.11: (a) weather forecast of three sample days in Fall, Winter,
and Spring using measured data at Michigan Tech testbed and (b) Dynamic
pricing for Michigan, Illinois, and Minnesota obtained from [9].
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Figure 5.12: (a) shows the weather effect on the building’s electricity bill
and system load factor, and (b) illustrates the effect of dynamic pricing
on the electricity bill and system load factor for the conditions shown in
Fig. 5.11. An RBC structure similar to that in TABLE 5.1 is used as a
baseline to calculate saving percentages.

5.5.8 Computational Cost

The problem formulation is hierarchical in nature, which allows each BEMS to solve

its own building optimization model. The developed building optimization model
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in Section II is linear programming in nature, thus the computational tasks at the

building level are not challenging for the demand response applications discussed in

this work. At the grid level, the nature of the problem is non-linear and LTCs and

cap banks add integer variables in the model. This poses inherent computational

challenges associated with the large scale non-convex optimization of distribution

grid [178]. However, for the size of the system considered in this chapter, computa-

tional complexity was not an issue. Simulation time for bidirectional optimization

discussed in this chapter on an INTEL Core i5, 3.2 GHz CPU desktop computer is

less than one minute for building’s unidirectional optimization and around 5 minutes

for optimization of both building and grid models. The entire hierarchical optimiza-

tion problem takes maximum of two iterations to solve. First, optimal load profiles at

each interval (i.e., each hour in this work) from the buildings are sent to grid control

center to determine feasibility of the grid operation. In case of infeasibility, maximum

feasible load profiles are sent to each building controllers.

Computational challenges associated with large practical size grid can be reduced by

using methods of convexification [179], distributed approaches [153], and heuristic

approaches [149]. The solution time desired for the proposed models depend on the

B2G applications sought. For example, voltage regulation needs to be tackle in a few

minutes, and load shifting in the order of hours [180]. For the type of B2G applications

proposed in this work, solution time of 5 minutes and a coarse time interval of one

hour suffice.
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5.5.9 Benefits, Challenges, and Limitations

This work provides a generic mathematical framework to optimally coordinate build-

ing loads and grid level assets, which is useful for near-term energy usage planning

and/or near-real time dispatch of building loads. This opens up opportunities to

deploy multiple distributed building loads for grid level applications such as demand

response, load following, and regulation services. The framework ensures that, in the

demand dispatch process, the operational constraints and interests of the grid level

and customer level energy management activities are honored; thus providing benefits

to both the entities involved.

The case studies clearly demonstrated the benefits of the proposed framework to the

building and grid operations. However, the major challenges in large scale deployment

of B2G integration are: (1) infrastructural challenges including interoperability of

tools at building and customer levels, bandwidth limitation, compatibility of system

to handle different data with different resolution and with different communication

standards, and (2) mechanism barriers including lack of financial models for costumer

motivation, accurate predication of weather and energy price, computational issues

for grid optimization for real-time applications in practical-sized systems, and scale-

ability of the control and optimization algorithms [180].

186



Use of dynamic pricing (day ahead or real-time) at small residential and commer-

cial buildings has already begun [181, 182]. With the widespread implementation

of dynamic pricing for small customers, and with energy management systems at

customer’s premise, the power peak in distribution systems will shift to the hours

with least expensive energy prices. Thus, the utility needs to devise demand limits

for the customers for the feasible grid operation. However, with the demand limits,

energy savings of the customer will reduce. An appropriate incentive/compensation

mechanism need to take place [183], where utilities may compensate the customers

for the reduction in the savings. However, the compensation may not be necessary for

all cases, since the case studies demonstrated that the optimized energy costs of the

buildings are reduced compared to the RBC even with the grid constraints. Utilities

need to devise subscription plans where the customers agree that the BEMSs honor

the demand limits sent by the DSO and penalties for noncompliance. The another

approach to solve this issue is the use of distribution location marginal price (DLMP)

[184]. If appropriate method for setting DLMP can be designed, which considers the

customer’s expected response for the low energy prices, the impact of low energy price

on peak demand can be eliminated to a certain extent.
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5.6 Conclusion

This study develops a bidirectional B2G optimization framework using an experimen-

tally validated building thermal model and a mathematical model for the distribution

grid. The building optimization model is based on disturbance and heat transfer phe-

nomena, and its model parameters are obtained from actual measurements collected

from an office building at Michigan Technological University. The distribution grid

model is comprised of modeling of typical distribution system components including

feeders, transformers, and control equipment such as capacitor banks and transformer

load tap changers. In the proposed bidirectional optimization model, the objective

is to minimize energy cost for the demand side and to maximize load factor for the

grid. To account for conflicting interests of the BEMS and distribution operators

in the bidirectional optimization, a novel B2G index is developed based on build-

ing energy cost and nodal load factor. Based on the provided case studies, it can

be concluded that the developed bidirectional optimization framework can reduce

commercial buildings’ monthly electricity costs by 25% in Winter, compared to the

unoptimized rule-based control of the building loads, while improving the system

load factor. However, the savings obtained in energy price and improvement on sys-

tem load factor greatly depend on various factors including energy price, flexibility

of commercial building loads, customers’ preferences, available control equipment in

a distribution grid, accuracy/availability of weather forecast and dynamic pricing
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prediction, etc. Nevertheless, the developed bidirectional optimization framework

certainly offers benefits to the customers and the utilities in B2G integration.
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Chapter 6

Conclusion and Future Work

Summary of the results and contributions of this dissertation are outlined in this

Chapter.

6.1 Summary and Conclusion

Model uncertainty is a crucial challenge for model-based control of a building’s HVAC

system. First, a Parameter Adaptive Building (PAB) technique is presented in this

dissertation. The PAB model learns and updates building time-varying parameters.

Then, an MPC framework that is robust against model uncertainty is proposed. The
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new framework is Robust Model Predictive Control (RMPC) which utilizes uncer-

tainty knowledge to enhance the nominal MPC. The specific contributions are listed

below:

1. A PAB modeling framework was developed using an unscented Kalman filter

(UKF) to simultaneously estimate all the states of the dynamic model and

continuously tune the parameters of the building model.

2. Closed loop RMPC outperformed nominal MPC considering the provided level

of comfort. However, higher comfort comes at the cost of higher energy con-

sumption for RMPC. For uncertainty range of 30% to 67%, RMPC leads to

better overall performance compared to MPC and RBC, while it fails to pro-

vide a better energy-comfort trade-off if model uncertainty is less than 30% or

more than 67%.

3. This dissertation proposed a new performance index (IOP ) to assess buildings’

energy consumption and comfort level simultaneously. The IOP index is used

for evaluating different building controllers. IOP index can be used to generate

a guideline for choosing appropriate controller type for buildings.

4. It is found that the best choice for controller type changes from MPC to RMPC,

and then finally to RBC as the model uncertainty increases. A typical RBC

controller outperforms model-based controllers (MPC and RMPC), if building

model uncertainty is above 67%.
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Next, SLT is applied to study entropy production and irreversibilities in thermo-

dynamic processes of heat-pump which cause deficiency and energy waste. HVAC

systems can be operated in low exergy fashion by applying exergy-aware control algo-

rithm which reduces irreversibilities and as a result, operation of HVAC will be more

energy efficient. In this dissertation, we derived and formulated exergy destruction

as a function of the physical parameters of the building and it is used as the cost

function of the optimal control problem to minimize exergy destruction rate. The

beneficial new aspects of MPC problem based on exergy is decreasing irreversible

entropy generation. The findings from exergy-based control of HVAC systems show

that:

1. Compared to RBC, XMPC achieves 22% reduction in exergy destruction and

36% reduction in electrical energy consumption by HVAC system. XMPC op-

timizes the use of low quality energy (low exergy) for HVAC systems and hence

decreasing irreversible entropy generation. Thus, supply air temperature needs

to be close to the room temperature since large difference in supply air temper-

ature increases entropy generation (exergy destruction).

2. XMPC consumes 12% less energy and saves 4% more exergy compared to

EMPC. By reducing energy loss and irreversibilities of energy/exergy flows into

the zones, heat transfer of zone and rate of change of energy/exergy contained

in the zone, XMPC offers more energy saving compared to conventional EMPC.
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3. Implementation of XMPC requires to have an accurate exergy model for HVAC

system and exergy destruction model across the system components.

4. In the optimization framework, solving XMPC problem is computationally ex-

pensive due to nonlinearity of the objective function. However XMPC can still

run real-time (time step of 1 hour) due to slow thermal dynamics of rooms.

In this dissertation, the same exergy-wise approach was used for control of ICEs.

Exergy was introduced as an effective metric to control of steady-state and transient

engine operations. Depending on the ICE applications, two different SLT efficiency

maps were generated. The first SLT map was to maximize the output work, while

the second SLT map aimed for maximizing Combined Power and Exhaust Exergy

(CPEX). This method is applicable to efficient operation of CHP systems in buildings

to provide required heat and electric power of commercial and residential buildings.

The followings are the main findings of this dissertation:

1. Exergy destruction due to combustion is the main source of exergy loss in the

ICE. Heat-transfer causes 12 ± 3% of the fuel exergy to be lost. By optimal

control of combustion phasing, a portion of exergy loss/destruction can be pre-

vented.

2. Based on the application, two optimization objectives including (i) maximum
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ηII,W , and (ii) maximum ηII,CPEX were defined for steady-state engine opera-

tion. The results show that on average, the proposed XCICE can reduce the fuel

consumption by 6.7% when the output work is of interest. For cases in which

CPEX is desired, such as CHP system, the proposed method can increase the

desired output exergy by 8.3% on average.

3. Transient control of the ICE using predictive exergy-based approach can min-

imize exergy loss/destruction while meeting required IMEP. The simulation

results showed up to 5% reduction in exergy loss/destruction by using the pro-

posed transient control for the engine load sweep in this study.

By optimizing energy usage, smart buildings can provide occupants’ comfort in a

cost effective way, and ancillary service for power grids. For this purpose, this thesis

develops a bidirectional B2G optimization framework using a building thermal model

and a mathematical model for the distribution grid. The building model is based on

heat transfer phenomena. The distribution grid model is comprised of modeling of

typical distribution system components including feeders, transformers, and control

equipment such as capacitor banks and transformer load tap changers. In the pro-

posed bidirectional optimization model, the objective is to minimize energy cost for

the demand side and to maximize load factor and load penetration for the grid side.

1. To account for conflicting interests of the BEMS and distribution operators

in the bidirectional optimization, a novel B2G index was developed based on
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building energy cost and nodal load factor.

2. Compared to the unoptimized rule-based control of the building loads, the pro-

posed bilevel optimization framework can reduce commercial buildings’ monthly

electricity costs by 25% while increasing the system load factor by 17%.

3. The savings obtained in energy price and improvement on system load factor

greatly depend on various factors including energy price, flexibility of commer-

cial building loads, customers’ preferences, available control equipment in a

distribution grid, accuracy/availability of weather forecast and dynamic pricing

prediction, etc.

6.2 Suggestions for Future Work

Despite the promising results of the proposed methodology presented in chapters of

this dissertation, there is always room for improvement and expanding the study.

Here is the list of some research areas worthy of further investigation:

1. The proposed exergy-based optimal control of ICE can be studied for other

types of engines including SI, diesel, Premixed Charge Compression Ignition

(PCCI) and Reactivity Controlled Compression Ignition (RCCI). In addition,

modeling is a crucial part of model-based control. Thus, using detailed and
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more accurate exergy models is anticipated to lead to more reliable advanced

control methods for ICEs.

2. In this dissertation, effects of exergy-based control of ICE on noise and emis-

sion have not been investigated. Noise and emissions can be included in the

optimization problem as constraints.

3. In Chapter 5, a framework for bilevel optimization was proposed. However,

effect of ESS (e.g., TES, CAES and EES) and DG (e.g., Solar panels, and wind

turbines) on the operation of B2G systems could be further studied.

4. Electrical energy is pure exergy. Therefore, all models used in the power gener-

ation and distribution grid sides are exergy models. A possible area of research

could be integrating building’s exergy model into distribution grid model (i.e.,

inherent exergy model). This procedure can define the optimum efficiency that

can be obtained from a B2G exergy system.

5. Real-time implementation of exergy-based controllers on an engine test-cell and

a building test-bed represents the next steps to realize the designed controllers

from this PhD dissertation.
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“Building modeling as a crucial part for building predictive control”. Energy

and Buildings, 56:8–22, 2013.

[29] M. Maasoumy. “Modeling and Optimal Control Algorithm Design for HVAC

Systems in Energy Efficient Buildings”. MS Thesis, Dept. Mechanical Engi-

neering, University of California at Berkeley, 2011.

[30] X. Xu, S. Wang, and G. Huang. “Robust MPC for temperature control of air-

conditioning systems concerning on constraints and multitype uncertainties”.

Building Services Engineering Research and Technology, 31(1):39–55, 2010.
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Appendix A

Unscented Kalman Filter

To perform UKF, we conduct the following initialization:

x̂0 = E[x0] (A.1)

P0 = E[(x0 − x̂0)(x0 − x̂0)T ] (A.2)

Each step of the UKF can be summarized as follows:
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Prediction:

Calculate sigma points:

Xk−1 = [x̂k−1 x̂k−1 + γ
√
Pk−1 x̂k−1 − γ

√
Pk−1]

Propagate each column of Xk−1 through time:

(Xk)i = f((Xk−1)i) i = 0, 1, ..., 2L

A-priori state estimate: x̂−k = ∑2L
i=0W

(m)
i (Xk)i

A-priori error covariance: P−k = ∑2L
i=0W

(c)
i [(Xk)i − x̂−k ][(Xk)i − x̂−k ]T +Qk

Update:

Measurement estimate: (Zk)i = h((Xk)i) i = 0, .., 2L

ẑ−k = ∑2L
i=0W

(m)
i (Zk)i

A-posteriori state estimate: x̂k = x̂−k +Kk(zk − ẑ−k )

where: Kk = Px̂k ẑk
P−1
ẑk ẑk

A-posteriori estimate of error covariance: Pk = P−k −KkPẑk ẑk
KT
k

where:

Px̂k ẑk
= W

(c)
i [(Xk)i − x̂−k ][(Zk)i − ẑ−k ]T

Pẑk ẑk
=

2L∑
i=0

W
(c)
i [(Zk)i − ẑ−k ][(Zk)i − ẑ−k ]T +Rk

Unscented Kalman Filter Algorithm
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where x̂− denotes a-priori estimate of state x. γ =
√

(L+ λ), and λ = α2(L+ δ)−L

are the composite scaling parameters. α is a scaling parameter that determines the

spread of the sigma points around x̂, and is usually set to a small positive value (e.g.

1e − 4 ≤ α ≤ 1). δ is a secondary scaling parameter which is usually set to 0 or

3−L [60]. Qk is the process error covariance matrix and Rk is the measurement noise

covariance matrix. W (m)
i and W

(c)
i weights are defined by:

W
(m)
i =


λ

(L+λ) , if i = 0

1
2(L+λ) , if i = 1, 2, ..., 2L

(A.3)

and

W
(c)
i =


λ

L+λ + (1− α2 + β), if i = 0

1
2(L+λ) , if i = 1, 2, ..., 2L

(A.4)

where β is a parameter used to incorporate the prior knowledge of the distribution of

x. We use β = 2 which is optimal for Gaussian distributions [185].
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Appendix B

State-space building model

Equations (B.1a)-(B.1d) represent the governing heat transfer equations which con-

stitute 5 states of the system.
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dT r1
dt

= 1
Cr

1
(

4∑
j=1

Tw1,j − T r1
Rw

1,j
+ T r5 − T r1

Rwin
1,5

+ ṁr
1cpavg(T s1 − T r1 ) + τwAwin1,5 Q

rad
1 + Q̇int

1 )

(B.1a)

dTw1,2
dt

= 1
Cw

1,2
(
T r1 − Tw1,2
Rw

1,2
+
T r2 − Tw1,2
Rw

1,2
+ r1,2α1,2A

w
1,2Q

rad
1,2 ) (B.1b)

dTw1,3
dt

= 1
Cw

1,3
(
T r1 − Tw1,3
Rw

1,3
+
T r3 − Tw1,3
Rw

1,3
+ r1,3α1,3A

w
1,3Q

rad
1,3 ) (B.1c)

dTw1,4
dt

= 1
Cw

1,4
(
T r1 − Tw1,4
Rw

1,4
+
T r4 − Tw1,4
Rw

1,4
+ r1,4α1,4A

w
1,4Q

rad
1,4 ) (B.1d)

dTw1,5
dt

= 1
Cw

1,5
(
T r1 − Tw1,5
Rw

1,5
+
T r5 − Tw1,5
Rw

1,5
+ r1,5α1,5A

w
1,5Q

rad
1,5 ) (B.1e)

The model states are presented in equation (B.2) and the first state which is the room

air temperature is considered as the system output.

x = [T r1 , Tw1,2, Tw1,3, Tw1,4, Tw1,5]T (B.2)

Values of elements of the linear model matrices are shown in equations (B.3) and
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(B.4).

Ad =



0.8715 0.0033 0.0028 0.0033 0.0062

0.0012 0.9976 0 0 0

0.0012 0 0.9976 0 0

0.0012 0 0 0.9976 0

0.0001 0 0 0 0.9998



An =



0.9183 0.0033 0.0028 0.0033 0.0062

0.0012 0.9976 0 0 0

0.0012 0 0.9976 0 0

0.0012 0 0 0.9976 0

0.0001 0 0 0 0.9998



Bd =



0.1106

0

0

0

0



(B.3)
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Bn =



0.0638

0

0

0

0



Ed = En =



0 0 0 0.0023

0.0012 0 0 0

0 0.0012 0 0

0 0 0.0012 0

0 0 0 0.0001


C =

[
1 0 0 0 0

]

D =
[
0
]

(B.4)
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Table B.1
Building model parameters.

Parameter/constant Value
ṁr
day 0.52 kg/s

ṁr
night 0.3 kg/s
cpavg 1005 J/kg.K
cvavg 718 J/kg.K
R 287 J/kg.K
Aw1,2 27.5 m2

Aw1,3 23.0 m2

Aw1,4 27.5 m2

Aw1,5 20.2 m2

Awin1,5 2.8 m2

Tsample 1 hour
N 24
τw 0.9
κ 711 W.s3/kg3

δU 6 K
αi,j 0.4
δU 6 K
Cw

1,2 7.9 e+ 5 J/K
Cw

1,3 6.6 e+ 5 J/K
Cw

1,4 7.9 e+ 5 J/K
Cw

1,5 2.6 e+ 7 J/K
Cr

1 2.8 e+ 5 J/K
Rw

1,2 0.0640 K/W
Rw

1,3 0.0768 K/W
Rw

1,4 0.0640 K/W
Rw

1,5 0.0299 K/W
Rwin

1,5 0.0868 K/W
U 32 K
ρen 50 kW.h/K
ρex 3.8 e+ 8 kW.h/K
h0 298.6 e+ 3 J/kg
s0 6.86 e+ 3 J/kg.K
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Appendix D

Program and Data File Summary

Following files were used for this dissertation arranged in the tables.

D.1 Chapter 1

Table D.1
Chapter 1 Figure files.

File name File description
Thesis Concept Figure v2.vsdx Figure 1.1

Thesis organization.vsdx Figure 1.2
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D.2 Chapter 2

Table D.2
Chapter 2 Figure files.

File name File description
testbed.vsd Figure 2.1

Datalogger.fig Figure 2.2
Architect final PAB.vsd Figure 2.3

PersCircuit-Final.vsd Figure 2.4
Dist.fig Figure 2.5

inputs.fig Figure 2.6
calib.fig Figure 2.7

UKFTroom.fig Figure 2.8
UKFwalls.fig Figure 2.9

UKFparams.fig Figure 2.10
justUKF-new.fig Figure 2.11

RMPC Schematic - new.vsd Figure 2.12
RMPC OL-CL edited Final.fig Figure 2.13

Discomfort-new.fig Figure 2.14
Energy-new.fig Figure 2.15

EnergySavingComparedToRBC.xlsx Figure 2.16
EnergySavingComparedToRBC.xlsx Figure 2.17

Table D.3
Experimental data files.

File name File description
SI-Datasheet OLD.xls Experimental temperature data
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Table D.4
MATLAB script and SIMULINK files.

File name File description

HVACModel RealData EKF final.m Extended Kalman Filter
function and plotting

myfun.m State Space Function

myfun noise.m Noise Function
function

pathdef.m Search path function

HVACModel RealData UKF final.m Unscented Kalman Filter
function and plotting

CA50DynamicModeling VO.m Physical model
Sliding lqr physicmodel.mdl Control Simulink model

D.3 Chapter 3

Table D.5
Chapter 3 figure files.

File name File description
ExergyLitSurveyFigure v4.vsd Figure 3.1

testbed new.vsd Figure 3.2
PersCircuit-Finalist.vsd Figure 3.3

TempPower Valid.fig Figure 3.4
Weekly exergy.fig Figure 3.5

MPC Structure.vsd Figure 3.6
RBC newest.fig Figure 3.7

EMPC newest.fig Figure 3.8
XMPC newest.fig Figure 3.9

entropy v2.fig Figure 3.10
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Table D.6
Required data files.

File name File description
SI-Datasheet OLD.xls Experimental temperature data

Table D.7
MATLAB script and Simulink files.

File name File description
LPV EMPC.m Script to call energy based LPV MPC
LPV RBC.m Script to run RBC

LPV XMPC.m Script to run exergy based LPV MPC
Model validation.m Script for model validation

Validation2.mdl Simulink model used for model validation
MPTinstall.m Script to call Multi Parametric Toolbox of Matlab
opti Install.m Script to run OPTI Toolbox of Matlab
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D.4 Chapter 4

Table D.8
Chapter 4 figure files.

File name File description
LitReview APEN XCICE.vsd Figure 4.1

Datapoints.fig Figure 4.2
Texh new.fig Figure 4.3

Destruction.fig Figure 4.4
PressValidation4 new.fig Figure 4.5
CrankAngleResolved.fig Figure 4.6
BarCharts APEN.xlsx Figure 4.7

Map 2nd Work.fig Figure 4.8
Map 2nd CPEX.fig Figure 4.9
Algorithm new.vsdx Figure 4.10

XCIC - MPC.vsd Figure 4.11
Tracking APEN new.fig Figure 4.12

SavingsCA50.fig Figure 4.13

Table D.9
Experimental data files.

File name File description
EngineExergyData WithoutEGR.mat Exp. data w/o EGR

DataLimitedNOxEfficiency50 limitedIMEP.mat Exp. data w/o NOX
Vol cyl.mat Instantaneous cylinder volume
species.mat Species datafile

reactions.mat Reactions datafile
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Table D.10
MATLAB script and Simulink files.

File name File description
ExperimentalExergyMap General.m Call XCICE for steady operation

XCIC fnc2.m Func. to calc. exergies for each cycle
Fuel Estimator.m Script for fuel estimation

ExperimentalExergyMap 2ndLaw brake.m ηII,W map generator
ExperimentalExergyMap 2ndLaw.m ηII,CPEX map generator
ExperimentalExergyMap 1stLaw.m 1st map generator

ExperimentalExergyMap Dest Exergy destruction map
ExperimentalExergyMap Texh.m Generates exhaust temperature map

Comparison Plot2.m Optimized and unoptimized plots

D.5 Chapter 5

Table D.11
Chapter 5 figure files.

File name File description
Ch5 ControllerBackground.vsd Figure 5.1

Concept.vsd Figure 5.2
TempPower Valid.fig Figure 5.3
B2G Flowchart4.vsd Figure 5.4

TestSystem.vsd Figure 5.5
Subplots.fig Figure 5.6

DynPricing.fig Figure 5.7
Bidirectional Temp.fig Figure 5.8

B2G Temp.fig Figure 5.9
Voltage Profile.fig Figure 5.10
WeatherPrice.fig Figure 5.11

Heterogeneity.xlsx Figure 5.12
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Table D.12
Required data files.

File name File description
SI-Datasheet OLD.xls Experimental Temperature data data

Dyn Pricing.xls Dynamic pricing data for MI hub
Base Load for33nodes.xls Existing loads in 33 nodes

Base Load.xls Existing loads for 4 studied nodes
Power.xls Maximum allowable load

Table D.13
MATLAB script and Simulink files.

File name File description
B2G.m Script to run bilevel optimization using B2G index

BangBang.m Script to run On-OFF controller
Bidirectional.m Script to run bilevel optimization

Bidirectional 5minInterval.m Script for B2G with 5 min intervals
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Letters of Permission
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E.1 Letter of Permission for [1, 2] (Chapter 2 and

Chapter 3 )

Figure E.1
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Figure E.2
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Figure E.3

255



E.2 Letter of Permission for [186] (Chapter 4)
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Meysam Razmara <mrazmara@mtu.edu>
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Permissions Helpdesk <permissionshelpdesk@elsevier.com> Thu, Jul 21, 2016 at 11:41 AM
To: Meysam Razmara <mrazmara@mtu.edu>

 
Dear Meysam,
 
As an Elsevier journal author, you retain the right to Include the arΆcle in a thesis or dissertaΆon (provided that this is
not to be published commercially) whether in part or in toto, subject to proper acknowledgment; see
http://www.elsevier.com/about/companyinformation/policies/copyright/personaluse for more informaΆon.  As
this is a retained right, no wriΔen permission from Elsevier is necessary. 
 
As outlined in our permissions licenses, this extends to the posΆng to your university’s digital repository of the thesis
provided that if you include the published journal arΆcle (PJA) version, it is embedded in your thesis only and not
separately downloadable:
 
19. Thesis/DissertaΆon: If your license is for use in a thesis/dissertaΆon your thesis may be
submiΔed to your insΆtuΆon in either print or electronic form. Should your thesis be
published commercially, please reapply for permission. These requirements include
permission for the Library and Archives of Canada to supply single copies, on demand, of
the complete thesis and include permission for Proquest/UMI to supply single copies, on
demand, of the complete thesis. Should your thesis be published commercially, please
reapply for permission. Theses and dissertaΆons which contain embedded PJAs as part of
the formal submission can be posted publicly by the awarding insΆtuΆon with DOI links
back to the formal publicaΆons on ScienceDirect.

Best of luck with your dissertaΆon and best regards,
Laura
 
Laura Stingelin
Permissions Helpdesk Associate
Elsevier
1600 John F. Kennedy Boulevard
Suite 1800
Philadelphia, PA 191032899
T: (215) 2393867
F: (215) 2393805 
E: l.stingelin@elsevier.com
Questions about obtaining permission: whom to contact?  What rights to request?
When is permission required?  Contact the Permissions Helpdesk at:
 +18005234069 x 3808     permissionshelpdesk@elsevier.com    

 
 
 
 
 
From: Meysam Razmara [mailto:mrazmara@mtu.edu] 
Sent: Wednesday, July 20, 2016 3:47 PM
To: Permissions Helpdesk

Figure E.4

256



E.3 Letter of Permission for [5] (Chapter 5)

5/18/2016 Rightslink® by Copyright Clearance Center

https://s100.copyright.com/AppDispatchServlet#formTop 1/1

Title: Bilevel Optimization Framework
for Smart BuildingtoGrid
Systems

Author: Meysam Razmara; Guna R.
Bharati; Mahdi Shahbakhti;
Sumit Paudyal; Rush D. Robinett
III

Publication: Smart Grid, IEEE Transactions on
Publisher: IEEE
Copyright © 1969, IEEE

If you're a copyright.com
user, you can login to
RightsLink using your
copyright.com credentials.
Already a RightsLink user or
want to learn more?

Thesis / Dissertation Reuse

The IEEE does not require individuals working on a thesis to obtain a formal reuse license,
however, you may print out this statement to be used as a permission grant: 

Requirements to be followed when using any portion (e.g., figure, graph, table, or textual material) of an
IEEE copyrighted paper in a thesis:

1) In the case of textual material (e.g., using short quotes or referring to the work within these papers)
users must give full credit to the original source (author, paper, publication) followed by the IEEE
copyright line © 2011 IEEE. 
2) In the case of illustrations or tabular material, we require that the copyright line © [Year of original
publication] IEEE appear prominently with each reprinted figure and/or table. 
3) If a substantial portion of the original paper is to be used, and if you are not the senior author, also
obtain the senior author’s approval. 

Requirements to be followed when using an entire IEEE copyrighted paper in a thesis: 

1) The following IEEE copyright/ credit notice should be placed prominently in the references: © [year of
original publication] IEEE. Reprinted, with permission, from [author names, paper title, IEEE publication
title, and month/year of publication] 
2) Only the accepted version of an IEEE copyrighted paper can be used when posting the paper or your
thesis online.
3) In placing the thesis on the author's university website, please display the following message in a
prominent place on the website: In reference to IEEE copyrighted material which is used with permission
in this thesis, the IEEE does not endorse any of [university/educational entity's name goes here]'s
products or services. Internal or personal use of this material is permitted. If interested in
reprinting/republishing IEEE copyrighted material for advertising or promotional purposes or for creating
new collective works for resale or redistribution, please go to
http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain a
License from RightsLink. 

If applicable, University Microfilms and/or ProQuest Library, or the Archives of Canada may supply single
copies of the dissertation.

   

 
Copyright © 2016 Copyright Clearance Center, Inc. All Rights Reserved. Privacy statement. Terms and Conditions. 
Comments? We would like to hear from you. Email us at customercare@copyright.com 

Figure E.5

257


	Contents
	List of Figures
	List of Tables
	Preface
	Acknowledgments
	List of Abbreviations
	Abstract
	Introduction
	Handling Model Uncertainty in Model Predictive Control for Energy Efficient Buildings
	Introduction
	Test-Bed and Historical Data
	Parameter Adaptive Building (PAB) Model
	Mathematical Modeling
	Heat Transfer
	System Dynamics
	Disturbance
	Additive uncertainty

	State-Parameter Estimation
	Estimation Algorithm
	Estimation Results


	Controller Design
	ASHRAE requirements for Building Climate Control
	Rule-Based Control (RBC)
	Model Predictive Control (MPC)
	Robust Model Predictive Control (RMPC)
	Feedback predictions
	Two-Lower-Diagonal Structure (TLDS):

	Performance Indices
	Control Results

	Summary and Conclusion

	Optimal Exergy Control of Building HVAC System
	Introduction
	Test-Bed and Historical Data
	Mathematical Modeling
	Building Thermal Model
	Building Exergy Model

	Controller Design
	Rule-Based Control (RBC)
	Energy-Based Model Predictive Control (EMPC)
	Exergy-Based Model Predictive Control (XMPC)

	Summary and Conclusion

	Optimal Exergy-Based Control of Internal Combustion Engines
	Introduction
	Engine Experimental Data
	Engine Exergy Model
	Dead-State Condition
	Exergy Balance
	Indicated Work Exergy
	Exhaust Exergy
	Combustion Irreversibility
	Exergy loss due to heat transfer
	Friction
	Fuel Exergy

	Chemical Reaction
	Second Law of Thermodynamics Efficiency
	In-cylinder Pressure Model

	Crank-Angle Resolved Exergy Analysis
	SLT Contour Maps
	Exergy-Based Optimal Combustion Phasing (XOCP)
	Control Oriented Engine Model
	Exergy-based Control of Internal Combustion Engines (XCICE)
	Optimization Results
	Summary and Conclusion

	Bilevel Optimization Framework for Smart Building-to-Grid Systems
	INTRODUCTION
	Mathematical Modeling
	Building Components Thermal Modeling
	Building Optimization Model-I
	Building Optimization Model-II
	Distribution Grid Optimization Model-I
	Distribution Grid Optimization Model-II
	B2G Index

	Solution Method
	Test Systems
	Building Testbed
	Distribution Test Feeder

	Results
	Unoptimized Rule Based Control
	Building/Grid side Optimizations
	Bidirectional Optimization
	Bidirectional Optimization Using IB2G Index
	Impact on Voltage Performance
	 Hour-ahead vs Day-ahead Optimization 
	Impact of Dynamic Pricing and Seasonal Weather
	Computational Cost
	Benefits, Challenges, and Limitations

	 Conclusion

	Conclusion and Future Work
	Summary and Conclusion
	Suggestions for Future Work

	References
	Unscented Kalman Filter
	State-space building model
	PhD Publications
	Peer Reviewed Journal Papers
	Published Journal Papers
	Submitted Journal Papers

	Refereed Conference Papers

	Program and Data File Summary
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5

	Letters of Permission
	Letter of Permission for maasoumy2014handling, razmara2015optimal (Chapter 2 and Chapter 3 )
	Letter of Permission for razmara2016optimalexergy (Chapter 4)
	Letter of Permission for RazmaraBilevel (Chapter 5)


